Функции большие полушария – 1.Каковы основные особенности строения больших полушарий? 2.Как распределены функции между большими полушариями головного

Содержание

Функции больших полушарий головного мозга

Функции больших полушарий головного мозга, а также строение больших полушарий:

Большие полушария головного мозга разделены щелью на две половины. Между ними мозолистое тело, которое проводит сигналы между полушариями.

Полушария покрыты тонкой корой в несколько миллиметров из серого вещества (это тоже нейроны). Для вместимости большего количества нейронов имеет поверхность в виде складок.

Кора больших полушарий (особенно лобные доли) — это наше главное преимущество, то что делает нас людьми (мыслящими и разумными). Это наша ЦНС, которая позволяет управлять огромной частью возможностей организма.

Кора каждого полушария тоже делится на доли: лобную, теменную, затылочную, височную. У каждой доли свое назначение.

Например, в затылочной доли есть центр зрительных ощущений

, где осознается вся зрительная информация.

Височные доли содержат слуховые центры для понимания высоты звука, ритма и т.д.

Лобные доли формируют цельный образ и создают ассоциации (т.е. связи между образами, звуками, буквами, лицами, фактами и т.д.)

Под корой есть лимбическая система, которая создает эмоции, играющие важную роль в обучении и выживании.

​​​​​​​

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

12. Строение и функции долей больших полушарий головного мозга. Функциональное назначение подкорковых узлов.

Большие полушария головного мозга представляют собой самый массивный отдел головного мозга. Они покрывают мозжечок и ствол мозга. Большие полушария составляют примерно 78 % общей массы мозга. В процессе онтогенетического развития организма большие полушария головного мозга развиваются из конечного мозгового пузыря нервной трубки, поэтому данный отдел головного мозга называется также конечным мозгом.

Большие полушария головного мозга разделены по средней линии глубокой вертикальной щелью на правое и левое полушария. В глубине средней части оба полушария соединены между собой большой спайкой — мозолистым телом.

В каждом полушарии различают доли: лобную, теменную, височную, затылочную и островок. Каждая доля мозга имеет различное функциональное значение.

Доли мозговых полушарий отделяются одна от другой глубокими бороздами. Наиболее важны три глубокие борозды: центральная (роландова), отделяющая лобную долю от теменной; боковая (сильвиева), отделяющая височную долю от теменной, и теменно-затылочная, отделяющая теменную долю от затылочной на внутренней поверхности полушария.

Каждое полушарие имеет верхнебоковую (выпуклую), нижнюю и внутреннюю поверхность.

Сверху полушарие покрыто корой — тонким слоем серого вещества, которое состоит из нервных клеток.

Кора головного мозга — наиболее молодое в эволюционном отношении образование центральной нервной системы. У человека она достигает наивысшего развития. Кора головного мозга имеет огромное значение в регуляции жизнедеятельности организма, в осуществлении сложных форм поведения и становлении нервно-психических функций.

Под корой находится белое вещество полушарий, оно состоит из отростков нервных клеток — проводников. Из-за образования мозговьгх извилин общая поверхность коры головного мозга значительно увеличивается.

Лобная доля лежит в передних отделах больших полушарий. Она контролирует произвольные движения, речь, психическую деятельность. За произвольные движения отвечает передняя центральная извилина. В нижней лобной извилине находится моторный центр речи– центр Брока. Лобная доля регулирует сложные формы поведения, мышление. При поражении этой доли у больного отмечается «лобная психика»: безынициативность, эйфория, дурашливость, непонимание юмора.

Теменная доля расположена между лобной, височной и затылочной долями. Она анализирует сигналы от рецепторов поверхностной и глубокой чувствительности, контролирует сложные виды чувствительности. В теменной доле находится центр праксиса (или целенаправленных движений).

Височная доля расположена в нижнебоковой области больших полушарий. Содержит корковые отделы слухового, статокинетического, вкусового анализаторов. В ней расположен центр Вернике, который отвечает за понимание речи. При поражении височной доли нарушается деятельность этих анализаторов, больной не понимает обращенную речь (речевая агнозия), возникают эпилептические припадки, расстройство сна, памяти, эмоций (тревога, депрессия), вегетативные нарушения.

Затылочная доля занимает задние отделы больших полушарий. Основная ее функция – восприятие и анализ зрительной информации. При поражении этой доли выпадают отдельные поля зрения, развивается зрительная агнозия (неузнавание знакомыхпредметов по их зрительным образам), алексия (непонимание письменной речи) и акалькулия (нарушение счета). При раздражении зрительной доли самопроизвольно возникают зрительные ощущения: вспышки света, искры, больной искаженно воспринимает форму и размеры предметов.

Островок, или так называемая закрытая долька, находится в глубине боковой борозды. От примыкающих соседних отделов островок отделен круговой бороздой. Поверхность островка разделена его продольной центральной бороздой на переднюю и заднюю части. В островке проецируется анализатор вкуса.

Подкорковые ядра – это скопление серого вещества в глубине больших полушарий. К ним относятся хвостатое ядро, скорлупа и бледный шар. Подкорковые ядра в совокупности с расположенными в ножках мозга красным ядром и черным веществом составляют экстрапирамидную систему. В ней выделяют две части: стриарную (хвостатое ядро и скорлупа) и паллидарную (бледный шар, красное ядро и черное вещество). Экстрапирамидная система контролирует непроизвольные движения и мышечный тонус.

Строение и функции больших полушарий головного мозга

Как устроен наш мозг? Сколько нейронов в нем и каковы функции неокортекса? Современные ученые скрупулезно исследуют особенности нашего мозга и открывают все больше интересных подробностей.

Большие полушария мозга

Благодаря развитию высших нервных центров человек определяет себя и свое место в социуме, сознательно контролирует свое поведение и способен к адаптации в новой среде. Все эти преимущества связаны с функциями больших полушарий, которые мы рассмотрим.

Особенности мозга человека

Мозг человеческого вида весит приблизительно 1 кг 200 грамм — это средние показатели. Он состоит из 5 основных частей: это конечный, промежуточный, средний, задний и продолговатый мозг.

Большие полушария мозга

Большие борозды (углубления) разделяют 4 основные части больших полушарий: лобную долю от теменной; а теменную — от затылочной; височная доля примыкает к трем другим. Последняя, пятая доля — островковая, которая находится в глубине латеральной ямки. Гармоничное взаимодействие всех нейронов обеспечивает рост и развитие нашей индивидуальности, наш характер и способности.

Можно выделить отдельную функцию больших полушарий — непрекращающееся развитие. Мозг человека все время развивается. Все, что индивидуум читает, видит, воспринимает, он буквально впитывает в себя. Особенно важна новая информация для детей до 2 лет, в это время их нейроны активно выстраивают связи на будущее.

В коре имеется от 14 до 17 млрд нейронов; а связей между клетками во много раз больше. Нейроны соединены синапсами. А помогают активировать связи различные нейромедиаторы — химические вещества, которые активируют рядом находящийся синапс.

Полушария мозга имеют особую структуру. Благодаря складкам, состоящим из борозд и извилин, площадь коры значительно увеличивается. По некоторым данным, общая площадь коры у среднестатистического человека — 2200 кв. см.

синапсы мозга

Под корой находится подкорка, или белое вещество мозга. Полушария между собой соединены мозолистым телом. А еще глубже находятся желудочки мозга — заполненные спинномозговой жидкостью пространства.

Кора состоит из слоев нервных нервных клеток, которые чередуются со слоями их ответвлений — аксонов. Всего насчитывается 6 слоев:

  • молекулярный слой;
  • наружный зернистый;
  • наружный пирамидный — содержит преимущественно пирамидные нейроны;
  • внутренний зернистый;
  • внутренний пирамидный;
  • слой веретеновидных нейронов.
высшая нервная деятельность

Веретеновидные нейроны постепенно переходят в белое вещество мозга. В коре происходят сознательные действия, формируется речь. В нижних глубинных частях под корой расположены центры бессознательных рефлексов и контроль внутренних органов и систем органов.

Зоны мозга

Чтобы понять функции больших полушарий головного мозга, нужно сначала разобрать их структуру. Полушария разделены условно на несколько центров, в которых проходят определенные психические и физиологические процессы. Эти центры не являются какими-то отдельными структурами. Все нейроны всех сетей постоянно взаимодействуют друг с другом. Это подтверждают многие исследователи.

отделы мозга

Но все-таки можно выделить некоторые области в сером веществе мозга, которые более специализируются на отдельных задачах.

Зоны мозга нейрофизиологи выделяют следующие:

  • Затылочная зона.
  • Височная — отвечает за обоняние и вкус. Два эти чувства сильно взаимосвязаны.
  • Зрительная зона. Тут расшифровываются сигналы, поступающие от глаз.
  • Теменная — это так называемая зона кожно-мышечной чувствительности.
  • Лобная доля — это сознательное поведение человека, его установки и трудовая деятельность. Задняя часть лобной доли — двигательный центр.

Функции больших полушарий мозга, как видим, распределены по зонам. Некоторые области имеют несколько функций. Например, руки связаны в больших полушариях с двумя зонами — двигательной и чувствительной.

И если при черепно-мозговой травме будет повреждена какая-либо из указанных областей, то функция этой зоны пострадает или совершенно пропадет. Восстановить утраченную функцию можно в том случае, если другая часть мозга — та, где находились нейроны, связанные с поврежденными тканями, сможет взять на себя всю работу утраченного центра.

Функции коры

Итак, каковы функции коры больших полушарий? Кора мозга отвечает за условные рефлексы, сформированные в процессе накопления опыта. Также в коре проходят все высшие психические процессы. Здесь сосредоточены зоны памяти, речи, мышления. Это более поздняя биологическая структура по сравнению с древним центральным мозгом, и она плохо изучена. Но известно, что наша личность и особенности характера, способность к усвоению и анализированию информации заложены именно в коре.

Большую роль играют в формировании навыков и привычек ассоциативные области. Можно сказать, утрируя информацию, что самая основная функция коры коры больших полушарий именно ассоциативная. Ведь на основе этих механизмов формируется и личность.

Ассоциативных областей 3:

  • теменно-затылочно-височная;
  • префронтальная ассоциативная;
  • лимбическая.

Совместная работа этих центров обеспечивает всесторонний анализ поступающей извне информации. Без этих высших центров человек не смог бы целенаправленно выполнять работу.

Двигательная активность

Важнейшая функция больших полушарий — физическая активность. В передних отделах предцентральной извилины находится центр, где локализованы области проекции ступней и голеней. В средней части этой извилины находятся клетки, работающие с сигналами верхних конечностей, а самая глубокая часть предцентральной извилины отвечает за работу мышц лица.

развитие мозга

Слаженная работа рецепторов проводящих нервных путей и этих мозговых центров обеспечивает нам ходьбу, работу руками и другую двигательную активность. Причем это все контролируется автоматически. Спортсмен ведь уже не думает, как согнуть ногу во время бега. Достаточно только дать сигнал старта сознательно.

Память и речь

В формировании памяти играют роль медиальная височная зона и гиппокамп. Однако они не являются тем местом, где накопленная информация хранится. Это скорее служебные зоны. Считается, что человек запоминает все, что видел или слышал когда-то. Основная проблема заключается в способности воспроизведения информации и ее перекодирования в слова.

борозды и извилины мозга

Область речи — это граница височной и теменной зон. Причем у человека различают 2 зоны: отвечающий за речевое восприятие центр Вернике и за само произношение центр Брока.

Как лучше запомнить информацию?

Одна из функций больших полушарий, как мы теперь понимаем, — это запоминание и воспроизведение закодированной информации в словах. Если держать в мыслях и постоянно повторять одни и те же слова, то информация останется только в зоне речи и через несколько дней исчезнет.

Чтобы более глубоко запомнить информацию, необходимо применять образное мышление, ассоциируя каждое абстрактное понятие с яркими объектами.

функции мозга

В глубинной памяти у нас сохраняются только те аспекты реальности, которые связаны с яркими впечатлениями и сильными продолжительными эмоциями. А эмоции у нас «базируются» глубоко в белом веществе — в миндалевидном теле. Функции больших полушарий связаны с чисто сознательными намерениями запомнить.

Стрессы и депрессии ухудшают способность мозга запоминать что-либо. Начинать учить материал в беспокойном или раздражительном состоянии попросту бесполезно.

Вывод

Что можно сказать о функциях больших полушарий? Все центры мозга тесно взаимосвязаны. Говоря о конкретных областях, ученые подразумевают скопление нейронов, которые больше других взаимосвязанных сетей участвуют в том или ином психическом процессе.

Формирование памяти, способность говорить и думать словами — это самый сложный психический процесс. На это уходит большое количество энергии, и речью занято множество нервных клеток.

Кора больших полушарий связана непосредственно с сознательными процессами, а подкорка — с бессознательными, глубинными частями личности, которое Фрейд называл «Оно».

Кора больших полушарий — Википедия

Нейроны коры больших полушарий головного мозга

Кора больших полушарий головного мозга или кора головного мозга (лат. cortex cerebri) — структура головного мозга, слой серого вещества толщиной 1,3—4,5 мм[1], расположенный по периферии полушарий большого мозга и покрывающий их. Наибольшая толщина отмечается в верхних участках предцентральной, постцентральной извилин и парацентральной дольки

[2].

Кора головного мозга играет очень важную роль в осуществлении высшей нервной (психической) деятельности[2].

Кора головного мозга человека составляет более 80 % массы мозга[3].

У человека кора составляет в среднем 44 % от объёма всего полушария в целом[2]. Площадь поверхности коры одного полушария у взрослого человека 2400 см² (в основном от 2000 до 2800 см²)[4][2]. На поверхностные части приходится 1/3, на залегающие в глубине между извилинами — 2/3 всей площади коры[1].

Величина и форма борозд подвержены значительным индивидуальным колебаниям — не только мозг различных людей, но даже полушария одной и той же особи по рисунку борозд не вполне похожи[1].

Всю кору полушарий принято разделять на 4 типа: древняя (архикортекс), старая (палеокортекс), новая (неокортекс) и промежуточная кора (состоящая из промежуточной древней и промежуточной старой коры). Поверхность неокортекса у человека занимает 95,6 %, архикортекса — 2,2 %, палеокортекса — 0,6 %, промежуточной — 1,6 %

[2].

Доли полушарий большого мозга

Кора большого мозга покрывает поверхность полушарий и образует большое количество различных по глубине и протяжённости борозд (лат. sulci cerebri). Между бороздами расположены различной величины извилины большого мозга (лат. gyri cerebri) [5].

В каждом полушарии различают следующие поверхности:

  1. выпуклую верхнелатеральную поверхность (лат. facies superolateralis), примыкающую к внутренней поверхности костей свода черепа
  2. нижнюю поверхность (лат. facies inferior), передние и средние отделы которой располагаются на внутренней поверхности основания черепа, в области передней и средней черепных ямок, а задние — на намёте мозжечка
  3. медиальную поверхность (лат. facies medialis), направленную к продольной щели мозга [5].

Эти три поверхности каждого полушария, переходя одна в другую, образуют три края. Верхний край (лат. margo superior) разделяет верхнелатеральную и медиальную поверхности. Нижнелатеральный край (лат. margo inferolateralis) отделяет верхнелатеральную поверхность от нижней. Нижнемедиальный край (лат. margo inferomedialis) располагается между нижней и медиальной поверхностями [5].

В каждом полушарии различают наиболее выступающие места: спереди — лобный полюс (лат. polus frontalis), сзади — затылочный (лат. polus occipitalis), и сбоку — височный (лат. polus temporalis) [5].

Полушарие разделено на пять долей. Четыре из них примыкают к соответствующим костям свода черепа:

  1. лобная доля (лат. lobus frontalis)
  2. теменная доля (лат. lobus parietalis)
  3. затылочная доля (лат. lobus occipitalis)
  4. височная доля (лат. lobus temporalis)
  5. островковая доля (лат. lobus insularis) (островок) (лат. insula) — заложена в глубине латеральной ямки большого мозга (лат. fossa lateralis cerebri), отделяющей лобную долю от височной [5].

В книге Годфруа Ж. «Что такое психология» выделяется шестая доля, мозолистого тела, расположенная на внутренней стороне полушария под мозолистым телом. [6]

Лобная доля[править | править код]

Лобную долю от теменной отделяет глубокая центральная (роландова) борозда (лат. sulcus centralis). Она начинается на медиальной поверхности полушария, переходит на его верхнелатеральную поверхность, идёт по ней немного косо, сзади наперёд, и обычно не доходит до латеральной (боковой или сильвиевой) борозды мозга

[5].

Приблизительно параллельно центральной борозде располагается предцентральная борозда (лат. sulcus precentralis), которая не доходит до верхнего края полушария. Предцентральная борозда окаймляет спереди прецентральную извилину (лат. gyrus precentralis) [5].

Верхняя и нижняя лобные борозды (лат. sulci frontales superior et inferior) направляются от предцентральной борозды вперёд. Они делят лобную долю на:

  • верхнюю лобную извилину (лат. gyrus frontalis superior), которая расположена выше верхней лобной борозды и переходит на медиальную поверхность полушария
  • среднюю лобную извилину (лат. gyrus frontalis medius), которую ограничивают верхняя и нижняя лобные борозды. Орбитальный (передний) сегмент этой извилины переходит на нижнюю поверхность лобной доли
  • нижнюю лобную извилину (лат. gyrus frontalis inferior), которая лежит между нижней лобной бороздой и латеральной бороздой мозга и ветвями латеральной борозды делится на ряд частей [5]

Латеральная борозда (лат. sulcus lateralis) — одна из наиболее глубоких борозд головного мозга. Она отделяет височную долю от лобной и теменной. Залегает латеральная борозда на верхнелатеральной поверхности каждого полушария и идёт сверху вниз и кпереди. В глубине этой борозды располагается углубление — латеральная ямка большого мозга (лат. fossa lateralis cerebri), дном которой является наружная поверхность островка[5].

От латеральной борозды к верху отходят мелкие борозды, называемые ветвями. Наиболее постоянными из них являются восходящая (лат. ramus ascendens) и передняя (лат. ramus anterior) ветви. Верхнезадний отдел борозды называется задней ветвью (лат. ramus posterior)[5].

Нижняя лобная извилина, в пределах которой проходят восходящая и передняя ветви, разделяется ими на три части:

  • заднюю — оперкулярную (покрышечную) часть (лат. pars opercularis), ограниченную спереди восходящей ветвью;
  • среднюю — треугольную часть (лат. pars triangularis), лежащую между восходящей и передней ветвями;
  • переднюю — орбитальную (глазничную) часть (лат. pars orbitalis), расположенные между передней ветвью и нижнелатеральным краем лобной доли[5].
Теменная доля[править | править код]
Теменная доля

Залегает сзади от центральной борозды, которая отделяет её от лобной. От височной отграничена латеральной бороздой мозга, от затылочной — частью теменно-затылочной борозды (лат. sulcus parietooccipitalis)[5].

Параллельно прецентральной извилине проходит постцентральная (лат. gyrus postcentralis). От неё сзади, почти параллельно продольной щели большого мозга, идёт внутритеменная борозда (лат. sulcus intraparietalis), делящая задневерхние отделы теменные отделы теменной доли на две извилины: верхнюю (лат. lobulus parietalis superior) и нижнюю (лат. lobulus parietalis inferior) теменные дольки. В нижней теменной дольке различают две сравнительно небольшие извилины: надкраевую (лат. gyrus supramarginalis), лежащую впереди и замыкающую задние отделы латеральной борозды, и расположенную кзади от предыдущей угловую (лат. gyrus angularis), которая замыкает верхнюю височную борозду[5].

Между восходящей и задней ветвями латеральной борозды мозга расположен участок коры, обозначаемый как лобно-теменная покрышка (лат. operculum frontoparietalis). В неё входят задняя часть нижней лобной извилины, нижние отделы предцентральной и постцентральной извилин, а также нижний отдел передней части теменной доли[5].

Затылочная доля[править | править код]
Височная доля[править | править код]
Височная доля

Имеет наиболее выраженные границы. В ней различают выпуклую латеральную поверхность и вогнутую нижнюю. Тупой полюс височной доли обращён вперёд и несколько вниз. Латеральная борозда большого мозга резко отграничивает височную долю от лобной[5].

Две борозды, расположенные на верхнелатеральной поверхности: верхняя (лат. sulcus temporalis superior) и нижняя (лат. sulcus temporalis inferior) височные борозды, следуя почти параллельно латеральной борозде мозга, разделяют долю на три височные извилины: верхнюю, среднюю и нижнюю (лат. gyri temporales superior, medius et inferior)[5].

Те участки височной доли, которые направлены в сторону латеральной борозды мозга изрезаны короткими поперечными височными бороздами (лат. sulci temporales transversi). Между этими бороздами залегают 2-3 короткие поперечные височные извилины, связанные с извилинами височной доли (лат. gyri temporales transversi) и островком[5].

Островковая доля (островок)[править | править код]

Залегает на дне латеральной ямки большого мозга (лат. fossa lateralis cerebri).

Она представляет собой трёхстороннюю пирамиду, обращённую своей вершиной — полюсом островка — кпереди и кнаружи, в сторону латеральной борозды. С периферии островок окружён лобной, теменной и височной долями, участвующими в образовании стенок латеральной борозды мозга[5].

Основание островка с трёх сторон окружено круговой бороздой островка (лат. sulcus circularis insulae).

Его поверхность прорезана глубокой центральной бороздой островка (лат. sulcus centralis insulae). Эта борозда разделяет островок на переднюю и заднюю части[5].

На поверхности различают большое количество мелких извилин островка (лат. gyri insulae). Большая передняя часть состоит из нескольких коротких извилин островка (лат. gyri breves insulae), задняя — одной длинной извилины (лат. gyrus longus insulae)[5].

Борозды и извилины медиальной поверхности[править | править код]

На медиальную поверхность полушария выходят лобная, теменная и затылочная доли.

Поясная извилина (лат. gyrus cinguli) начинается подмозолистым полем (лат. area subcallosa), огибает мозолистое тело и при посредстве узкой полоски — перешейка поясной извилины (лат. isthmus gyri cinguli) переходит в парагиппокампальную извилину на нижней поверхности полушария[5].

Борозда мозолистого тела (лат. g sulcus corporis callosi) отделяет поясную извилину от мозолистого тела и на нижней поверхности полушария продолжается в борозду гиппокампа[5].

Поясная извилина ограничена сверху поясной бороздой (лат. sulcus cinguli). В последней различают выпуклую по направлению к лобному полюсу переднюю часть и заднюю часть, которая, следуя вдоль поясной извилины и не доходя до её заднего отдела, поднимается к верхнему краю полушария большого мозга. Задний конец борозды лежит позади верхнего конца центральной борозды. Между предцентральной бороздой, окончание которой иногда хорошо видно у верхнего края медиальной поверхности полушария, и концом поясной борозды, располагается парацентральная долька (лат. lobulus paracentralis)[5].

Выше поясной извилины, Спереди от подмозолистого поля, начинается медиальная лобная извилина (лат. gyrus frontalis medialis). Она тянется до парацентральной дольки и является нижней частью верхней лобной извилины.

Сзади от поясной борозды лежит небольшая четырёхугольная долька — предклинье (лат. precuneus). Её задней границей является глубокая теменно-затылочная борозда (лат. sulcus parietooccipitalis), нижней — подтеменная борозда (лат. sulcus subparietalis), отделяющая предклинье от заднего отдела поясной извилины[5].

Сзади и ниже предклинья залегает треугольная долька — клин (лат. cuneus). Выпуклая наружная поверхность клина участвует в образовании затылочного полюса. Направленная вниз и вперёд вершина клина почти доходит до заднего отдела поясной извилины. Задненижней границей клина является очень глубокая шпорная борозда (лат. sulcus calcarinus), передней — теменно-затылочная борозда[5].

Борозды и извилины нижней поверхности[править | править код]

На нижней поверхности лобной доли располагается обонятельная борозда (лат. sulcus olfactorius). Кнутри от неё, между нею и нижнемедиальным краем полушария, лежит прямая извилина (лат. gyrus rectus). Её задний отдел доходит до переднего продырявленного вещества (лат. substantia perforata anterior). Кнаружи от борозды располагается остальная часть нижней поверхности лобной доли, изрезанная короткими глазничными бороздами (лат. sulci orbitales), на ряд небольших глазничных извилин (лат. gyri orbitales)[5].

Нижняя поверхность височной доли глубокой бороздой гиппокампа (лат. sulcus hippocampi) отделена от ножек мозга. В глубине борозды залегает узкая зубчатая извилина (лат. gyrus dentatus). Передний её конец переходит в крючок, а задний — в ленточную извилину (лат. gyrus fasciolaris) залегающую под валиком мозолистого тела. Латерально от борозды находится парагиппокампальная извилина (лат. gyrus parahippocampalis). Впереди эта извилина имеет утолщение в виде крючка (лат. uncus), а кзади продолжается в язычную извилину (лат. gyrus lingualis). Парагиппокампальную и язычную извилины с латеральной стороны ограничивает коллатеральная борозда (лат. sulcus collateralis), переходящая спереди в носовую борозду (лат. sulcus rhinalis). Остальную часть нижней поверхности височной доли занимают медиальная и латеральная затылочно-височные извилины (лат. gyri occipitotemporales medialis et lateralis), разделённые затылочно-височной бороздой (лат. sulcus occipitotemporalis). Латеральная затылочно-височная извилина нижнелатеральным краем полушария отделяется от нижней височной извилины[5].

Строение[править | править код]

Цитоархитектоника (расположение клеток)

  • молекулярный слой
  • наружный зернистый слой
  • слой пирамидальных нейронов
  • внутренний зернистый слой
  • ганглионарный слой (внутренний пирамидный слой;клетки Беца)
  • слой полиморфных клеток

Миелоархитектоника (расположение волокон)

  • полоска молекулярного слоя
  • полоска наружного зернистого слоя
  • полоска внутреннего зернистого слоя
  • полоска ганглионарного слоя [7].

Кора полушарий головного мозга представлена слоем серого вещества толщиной в среднем около 3 мм (1,3 — 4,5 мм). Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга. В коре содержится около 10-14 млрд нервных клеток. Различные её участки, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями [8].

Типичным для новой коры (лат. neocortex) является наличие шести слоёв, различающихся между собой главным образом по форме входящих в них нервных клеток. При этом на медиальной и нижней поверхностях полушарий сохранились участки старой (лат. archipallium) и древней (лат. paleopallium) коры, имеющей 2-слойное и 3-слойное строение[1]. Также выделяется промежуточная кора (лат. mesopallium) располагающаяся между старой и новой, а также древней и новой корой[5]. Древняя кора представлена гиппокампом, а старая — участком коры возле обонятельной луковицы на нижней поверхности лобной доли[1].

Цитоархитектоника[править | править код]

Мультиполярные нейроны коры головного мозга весьма разнообразны по форме. Среди них можно выделить:

  • пирамидные
  • звёздчатые
  • веретенообразные
  • паукообразные
  • горизонтальные

Пирамидные нейроны составляют основную и наиболее специфическую для коры головного мозга форму (80—90 % всех нейронов). Размеры их варьируют от 10 до 140 мкм. Они имеют вытянутое треугольное тело, вершина которого обращена к поверхности коры. От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных слоях серого вещества. От основания пирамидных клеток берут начало аксоны, в одних клетках короткие, образующие ветвления в пределах данного участка коры, в других — длинные, поступающие в белое вещество [8].

Пирамидные клетки различных слоёв коры отличаются размерами и имеют разное функциональное значение. Мелкие клетки представляют собой вставочные нейроны, аксоны которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или двух полушарий (комиссуральные нейроны). Эти клетки встречаются в разных количествах во всех слоях коры. Особенно богата ими кора головного мозга человека. Аксоны крупных пирамидных нейронов принимают участие в образовании пирамидных путей, проецирующих импульсы в соответствующие центры мозгового ствола и спинного мозга [8].

Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоёв:

  1. Молекулярный (лат. lamina molecularis)
  2. Наружный зернистый (лат. lamina granularis externa)
  3. Пирамидальных нейронов (лат. lamina pyramidalis)
  4. Внутренний зернистый (лат. lamina granularis interna)
  5. Ганглионарный (слой клеток Беца) (лат. lamina ganglionaris)
  6. Слой мультиформных (полиморфных) клеток (лат. lamina multiformis) [8]

Кора полушарий головного мозга также содержит мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорную и разграничительную функции [8].

На медиальной и нижней поверхности полушарий сохранились участки старой, древней коры, которые имеют двухслойное и трехслойное строение.

Молекулярный слой[править | править код]

Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их аксоны проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. Основная масса волокон этого сплетения представлена ветвлениями дендритов нейронов нижележащих слоёв [8].

Наружный зернистый слой[править | править код]

Наружный зернистый слой образован мелкими нейронами диаметром около 10 мкм, имеющими округлую, угловатую и пирамидальную форму, и звёздчатыми нейронами. Дендриты этих клеток поднимаются в молекулярный слой. Аксоны или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя [8].

Слой пирамидальных нейронов[править | править код]

Является самым широким по сравнению с другими слоями коры головного мозга. Он особенно хорошо развит в прецентральной извилине. Величина пирамидных клеток последовательно увеличивается в пределах 10-40 мкм от наружной зоны этого слоя к внутренней. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Дендриты, берущие начало от боковых поверхностей пирамиды и её основания, имеют незначительную длину и образуют синапсы со смежными клетками этого слоя. Аксон пирамидной клетки всегда отходит от её основания. В мелких клетках он остаётся в пределах коры; аксон же, принадлежащий крупной пирамиде, обычно формирует миелиновое ассоцативное или комиссуральное волокно, идущее в белое вещество [8].

Внутренний зернистый слой[править | править код]

В некоторых полях коры развит очень сильно (например, в зрительной зоне коры). Однако в других участках он может отсутствовать (в прецентральной извилине). Этот слой образован мелкими звёздчатыми нейронами. В его состав входит большое количество горизонтальных волокон [8].

Ганглионарный слой (Внутренний пирамидный слой;Клетки Беца)[править | править код]

Образован крупными пирамидными клетками, причём область прецентральной извилины содержит гигантские клетки, описанные впервые российским анатомом В. А. Бецем в 1874 году (клетки Беца). Они достигают в высоту 120 и в ширину 80 мкм. В отличие от других пирамидных клеток коры гигантские клетки Беца характеризуются наличием крупных глыбок хроматофильного вещества. Их аксоны образуют главную часть кортико-спинальных и кортико-нуклеарных путей и оканчиваются на мотонейронах мозгового ствола и спинного мозга [8].

Перед выходом из коры от пирамидного пути отходит множество коллатералей. Аксоны от гигантских клеток Беца дают коллатерали, посылающие тормозящие импульсы в саму кору. Также коллатерали волокон пирамидного пути идут в полосатое тело, красное ядро, ретикулярную формацию, ядра моста и нижних олив. Ядра моста и нижних олив передают сигнал в мозжечок. Таким образом, когда пирамидный путь передаёт сигнал, вызывающий целенаправленное движение, в спинной мозг, одновременно сигналы получают базальные ганглии, ствол мозга и мозжечок. Помимо коллатералей пирамидных путей, существуют волокна, которые идут непосредственно от коры к промежуточным ядрам: хвостатому телу, красному ядру, ядрам ретикулярной формации ствола мозга и др.[8]

Слой мультиморфных клеток[править | править код]

Образован нейронами различной, преимущественно веретенообразной формы. Внешняя зона этого слоя содержит более крупные клетки. Нейроны внутренней зоны мельче и лежат на большом расстоянии друг от друга. Аксоны клеток полиморфного слоя уходят в белое вещество в составе эфферентных путей головного мозга. Дендриты достигают молекулярного слоя коры [8].

Миелоархитектоника[править | править код]

Среди нервных волокон коры полушарий головного мозга можно выделить:

  • ассоциативные волокна — связывают отдельные участки коры одного полушария
  • комиссуральные волокна — соединяют кору двух полушарий
  • проекционные волокна — соединяют кору с ядрами низших отделов центральной нервной системы. Афферентные проекционные волокна заканчиваются в слое пирамидальных нейронов[8]

Кроме тангенциального сплетения молекулярного слоя, на уровне внутреннего зернистого и ганглионарного слоёв расположены два тангенциальных слоя миелиновых нервных волокон и коллатералей аксонов клеток коры. Вступая в синаптические связи с нейронами коры, горизонтальные волокна обеспечивают широкое распространение в ней нервного импульса [8].

Модуль[править | править код]

I, II, III, IV, V, VI — слои коры
Афферентные волокна
1. кортико-кортикальное волокно
2. таламо-кортикальное волокно
2а. зона распространения специфических таламо-кортикальных волокон
3. пирамидные нейроны
3а. заторможенные пирамидные нейроны
4. тормозные нейроны и их синапсы
4а. клетки с аксональной кисточкой
4б. малые корзинчатые клетки
4в. большие корзинчатые клетки
4г. аксоаксональные нейроны
4д. клетки с двойным букетом дендритов (тормозящие тормозные нейроны)
5. шипиковые звёздчатые клетки, возбуждающие пирамидные нейроны непосредственно и путём стимуляции клеток с двойным букетом дендритов

Исследуя кору больших полушарий головного мозга Я. Сентаготаи и представители его школы установили, что её структурно-функциональной единицей является модуль — вертикальная колонка диаметром около 300 мкм. Модуль организован вокруг кортико-кортикального волокна, представляющего собой аксон пирамидной клетки III слоя (слоя пирамидальных клеток) того же полушария (ассоциативное волокно), либо от пирамидальных клеток противоположного (комиссуральное). В модуль входят два таламо-кортикальных волокна — специфических афферентных волокна, оканчивающихся в IV слое коры на шипиковых звёздчатых нейронах и отходящих от основания (базальных) дендритах пирамидальных нейронов. Каждый модуль, по мнению Сентаготаи разделяется на два микромодуля диаметром менее 100 мкм. Всего в неокортексе человека примерно 3 млн модулей. Аксоны пирамидальных нейронов модуля проецируются на три модуля той же стороны и через мозолистое тело посредством комиссуральных волокон на два модуля противоположного полушария. В отличие от специфических афферентных волокон, оканчивающихся в IV слое коры, кортико-кортикальные волокна образуют окончания во всех слоях коры, и, достигая I слоя, дают горизонтальные ветви, выходящие далеко за пределы модуля[8].

Помимо специфических (таламо-кортикальных) афферентных волокон, на выходные пирамидальные нейроны возбуждающее влияние оказывают шипиковые звёздчатые нейроны. Различают два типа шипиковых клеток:

  1. шипиковые звёздчатые нейроны фокального типа, образующие множественные синапсы на отходящих от верхушки (апикальных) дендритах пирамидального нейрона
  2. шипиковые звёздчатые нейроны диффузного типа, аксоны которых широко ветвятся в IV слое и возбуждают базальные дендриты пирамидальных нейронов. Коллатерали аксонов пирамидных нейронов вызывают диффузное возбуждение соседних пирамид [8].

Тормозная система модуля представлена следующими типами нейронов:

  1. клетки с аксональной кисточкой образуют в I слое множественные тормозные синапсы на горизонтальных ветвях кортико-кортикальных волокон
  2. корзинчатые нейроны — тормозные нейроны, образующие тормозящие синапсы на телах практически всех пирамидных клеток. Они подразделяются на малые корзинчатые нейроны, оказывающие тормозящее влияние на пирамидные нейроны II, III и V слоёв модуля, и большие корзинчатые клетки, располагающиеся на периферии модуля и имеющие тенденцию подавлять пирамидные нейроны соседних модулей
  3. аксоаксональные нейроны, тормозящие пирамидные нейроны II и III слоёв. Каждая такая клетка образует синапсы на начальных участках аксонов сотен нейронов II и III слоёв. Они тормозят, таким образом, кортико-кортикальные волокна, но не проекционные волокна нейронов V слоя[8].

Система угнетения тормозных нейронов:

  1. клетки с двойным букетом дендритов располагаются во II и III слоях и, угнетая тормозные нейроны, производят вторичное возбуждающее действие на пирамидные нейроны. Ветви их аксонов направлены вверх и вниз и распространяются в узкой колонке (50 мкм). Таким образом, клетка с двойным букетом дендритов растормаживает пирамидные нейроны в микромодуле (в колонке диаметром 50-100 мкм)[8].

Мощный возбуждающий эффект фокальных шипиковых звёздчатых клеток объясняется тем, что они одновременно возбуждают пирамидные нейроны и клетку с двойным букетом дендритов. Таким образом, первые три тормозных нейрона тормозят пирамидные клетки, а клетки с двойным букетом дендритов возбуждают их, угнетая тормозные нейроны[8].

Однако, также существуют критические и альтернативные концепции, ставящие под сомнение модульную организацию коры больших полушарий и мозжечка. Безусловно, влияние на эти воззрения оказало предсказание в 1985 г. и в дальнейшем открытие в 1992 г. диффузного объёмного нейротрансмиттинга[9].

Резюме[править | править код]

Межнейрональные взаимосвязи нейронов коры больших полушарий головного мозга можно представить следующим образом: входящая (афферентная) информация поступает из таламуса по таламо-кортикальным волокнам, которые заканчиваются на клетках IV (внутреннего зернистого) слоя. Его звёздчатые нейроны оказывают возбуждающее воздействие на пирамидные клетки III (пирамидальных нейронов) и V (ганглионарного) слоёв, а также на клетки с двойным букетом дендритов, которые блокируют тормозные нейроны. Клетки III слоя образуют волокна (ассоциативные и комиссуральные), которые связывают между собой различные отделы коры. Клетки V и VI (мультиморфных клеток) слоёв формируют проекционные волокна, которые уходят в белое вещество и несут информацию другим отделам центральной нервной системы. Во всех слоях коры находятся тормозные нейроны, играющие роль фильтра путём блокирования пирамидных нейронов [8].

Кора различных отделов характеризуется преимущественным развитием тех или иных её слоёв. Так, в двигательных центрах коры, например в передней центральной извилине, сильно развиты III, V и VI и плохо выражены II и IV слои. Это так называемый агранулярный тип коры. Из этих областей берут начало нисходящие проводящие пути центральной нервной системы. В чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоняния, слуха и зрения, слабо развиты слои, содержащие крупные и средние пирамидные клетки , тогда как зернистые слои (II и IV) достигают своего максимального развития. Это гранулярный тип коры [8].

Цитоархитектонические поля Бродмана[править | править код]

Цитоархитектонические поля Бродмана – отделы коры больших полушарий головного мозга, отличающиеся по своей цитоархитектонике (строению на клеточном уровне). Выделяется 52 цитоархитектонических поля Бродмана.

В 1909 году немецкий невролог Корбиниан Бродманн опубликовал [10] карты цитоархитектонических полей коры больших полушарий головного мозга. Бродман впервые создал карты коры. Впоследствии О. Фогт и Ц. Фогт (1919-1920 гг.) с учётом волоконного строения описали в коре головного мозга 150 миелоархитектонических участков. В Институте мозга АМН СССР И. Н. Филипповым и С. А. Саркисовым были созданы карты коры головного мозга, включающие 47 цитоархитектонических полей[11].

Несмотря на критику [12], поля Бродмана являются самыми известными и наиболее часто цитируемыми при описании нейрональной организации коры головного мозга и её функций.

Функционирование коры головного мозга, как и всего организма в целом, осуществляется в двух основных, четко отличающихся друг от друга состояниях: бодрствования и сна.

Реализация функций психических процессов, вовлекает весь мозг, и обеспечивается взаимосвязанной, скоординированной деятельностью многих участков коры головного мозга. Тем не менее, существуют области, в которых реализация конкретных функций в значительной степени локализуется. Поражение, недоразвитость, либо низкая активность таких участков вызывает нарушения выполнения локализованных в них функций. Так по функциям приёма сенсорных сигналов, формировании и управления движениями и обработки информации, кора головного мозга разделяется на три зоны: сенсорную, моторную и ассоциативную. При этом сенсорная зона обеспечивает приём и обработку сигналов органов чувств, моторная отвечает за произвольные движения. Функция ассоциативной зоны — связывать между собой активность сенсорных и моторных зон. Ассоциативная зона прогнозирует, получает и перерабатывает информацию из сенсорной зоны и, через моторную, инициирует и формирует целенаправленное осмысленное поведение.

В настоящее время основным инструментом для определения нейронных сетей, участков головного мозга, активизирующихся при определенных условиях, является позитронно-эмиссионная томография. В ходе таких исследований определяются нейронные сети, вовлекающиеся в реализацию конкретных функций. В частности, так была выявлена сеть пассивного режима работы мозга, активная в состоянии свободной, не целенаправленной умственной деятельностью, когда человек бездействует, отдыхает, грезит наяву или погружён в себя, а не связан с выполнением какой-либо задачи внешнего мира.

Сенсорная зона[править | править код]

Сенсорная кора (зона) — это часть коры больших полушарий, которая получает и обрабатывает информацию от органов чувств. Области коры головного мозга, которые получают сенсорные сигналы от таламуса, называются первичными сенсорными зонами. Сигналы от органов зрения, слуха и осязания поступают в первичную зрительную, слуховую и соматосенсорную кору, соответственно. Как правило, два полушария получают информацию от противоположной (контралатеральной) стороны тела. Например, правая первичная соматосенсорная кора получает информацию от левых конечностей, а правая зрительная кора получает информацию от рецептивного поля левого зрительного нерва. Топография сенсорных зон коры отражает топографию рецептивного поля соответствующего органа чувств и называется картой. Например, соседние точки в первичной зрительной коре соответствуют соседним точкам сетчатки. Эта карта называется зрительной картой. Таким же образом, существует звуковая карта в первичной слуховой коре и соматосенсорная карта в первичной сенсорной коре. Последняя топографическая карта тела на задней центральной извилине была проиллюстрирована как искаженное изображение человека, соматосенсорного гомункулуса, где размер различных частей тела отражает относительную плотность их иннервации. Областям с большим количеством сенсорной иннервации, таким, как кончики пальцев и губы, отвечают большие области коры для обработки более тонких ощущений.

Действия вопреки страху, аффективное, эмоционально насыщенное поведение сопровождаются активацией так называемой подколенной области передней части поясной извилины головного мозга (subgenual anterior cingulate cortex — sgACC). Чем больше страх, тем сильнее активизируется эта область мозга. При этом одновременно подавляется активность височных долей головного мозга[13].

В июле 2016 на сайте журнала Nature была опубликована информация о карте коры головного мозга, составленной в результате исследований, проведенных Дэвидом Ван Эссеном (David Van Essen) и его коллегами из Медицинской школы Университета Дж. Вашингтона. Использование алгоритмов машинного обучения позволило идентифицировать 180 структурных участков коры головного мозга, вовлеченных в выполнение различных функций, занимающих 96.6% площади коры, включая 97 прежде неизвестных. В качестве исходных данных использовались изображения мультимодальной магнитно-резонансной томографии головного мозга 210 здоровых подопытных обоих полов, выполнявших простые задания, полученные в ходе реализации проекта по установлению полной «карты» структурных взаимосвязей мозга «Коннектом человека» (Human Connectome Project, HCP)[14][15].

Обнаружено, что центры конфликта находятся в передней поясной коре, неприятия в островковой доле[16].

Усвоение и понимание письменной и устной речи осуществляется частью коры головного мозга, размещённой в заднем отделе верхней височной извилины доминантного полушария, называемой областью Вернике.

Моторная организация речи, преимущественно связанная с фонологической и синтаксической кодификациями, обеспечивается работой центра Брока, участка коры, находящегося в задненижней части третьей лобной извилины левого полушария (у правшей).

Количественные значения активируют участки, расположенные в лобных и задних отделах теменных долей, головного мозга. Одним из ключевых мест является внутритеменная борозда, где представлен семантический смысл чисел.[17] У людей, страдающих дискалькулией — неспособностью к изучению арифметики, данный участок мозга меньше, чем у здоровых людей, и недостаточно активен. В состав сетей, связанных с решением математических задач, входит часть центра Брока.

  1. 1 2 3 4 5 Привес М. Г., Лысенков Н. К., Бушкович В. И. Анатомия человека. — 11-е изд.. — СПб.: Гиппократ, 1998. — С. 525-530. — 704 с. — 5 000 экз. — ISBN 5-8232-0192-3.
  2. 1 2 3 4 5 Сапин М. Р. Анатомия человека: в 2-х т. — М.: Просвещение, 1995. — ISBN 5-09-004385-X.
  3. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. (англ.) // Frontiers In Human Neuroscience. — 2009. — Vol. 3. — P. 31—31. — DOI:10.3389/neuro.09.031.2009. — PMID 19915731. [исправить]
  4. Toro, Roberto; Perron, Michel; Pike, Bruce; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš. Brain Size and Folding of the Human Cerebral Cortex (англ.) // Cerebral Cortex : journal. — 2008. — 1 October (vol. 18, no. 10). — P. 2352—2357. — ISSN 1047-3211. — DOI:10.1093/cercor/bhm261. — PMID 18267953.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Синельников Р. Д., Синельников Я. Р. Атлас анатомии человека. — 2-е изд.. — М.: Медицина, 1996. — Т. 4. — С. 29-37. — 320 с. — 10 000 экз. — ISBN 5-225-02723-7..
  6. ↑ Годфруа Ж. Что такое психология: В 2-х т. Т.2: Пер. с франц.-М.: Мир, 376 с., с.253. ISBN 5-03-001902-2
  7. Фениш Х. Карманный атлас анатомии человека. — Минск: Вышэйшая школа, 1996. — С. 316-317. — 464 с. — 20 000 экз. — ISBN 985-06-0114-0.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13

Большие полушария головного мозга: строение и функции

Рейтинг автора

Автор статьи

Терапевт, образование: Северный медицинский университет. Стаж работы 10 лет.

Написано статей

Ученые считают загадкой науки головной мозг человека и его функции. Мы уже много знаем о его строении и работе, поэтому в состоянии лечить многочисленные заболевания, считавшиеся смертельными. Знания о структуре и работе больших полушарий играют важную роль в понимании функционирования мозга, а также помогают разбираться в проблемах, которые возникают при заболеваниях и травмах.

Состояния и патологии, приводившие к тяжелейшим последствиям и даже к смерти, поддаются оперативному и консервативному лечению, возвращая людей к нормальной жизни после серьезных травм и сложных хирургических вмешательств.

Строение больших полушарий

Спинной мозг человека соединен с головным и вплоть до среднего мозга выглядит цельным элементом. Затем он делится на две симметричные, но неоднозначные по функциям половины, которые называются «большие полушария головного мозга».

Схема 2Обе вместе носят название переднего. Соединительный элемент между ними – мозолистое тело. Часть, расположенная снизу, носит название «основание мозга».

Отличаясь от строения органа других млекопитающих величиной, большие полушария Хомо Сапиенс развиты и закрывают собой промежуточный и средний. По величине с ними могут сравниться только аналогичные образования у дельфинов и некоторых видов высших приматов.

Структура тканей включает два типа вещества:

  • Серое, формирующее наружный слой или кору головного мозга. Это вещество в виде подкорковых структур рассеяно по массе белого.
  • Белое, представляющее собой внутреннюю массу мозгового вещества, преобладающую по объему. Оно формирует проводящие пути.

Органы, их функции и слаженная работа всех систем контролируется корой БП. Она представляет собой тончайший слой в несколько миллиметров серого вещества, состоящего из тел нейронов. Кора является главной частью мозга. Она покрывает поверхность переднего и отличается большой площадью из-за того, что полушария имеют выраженную складчатость, которая называется бороздами и извилинами. Примерная поверхность занимает от 2000 до 2500 квадратных сантиметров.

Строение и особенности коры больших полушарий головного мозга обуславливает нашу интерактивность, то есть возможность вступать в контакт с окружением, оценивать его, получать важнейшие данные.

У нее достаточно сложная организация и оригинальное строение, структура. Она испещрена глубокими бороздами и складками, которые называются извилинами. Наиболее глубокие из всех разделяют весь передний мозг (каждое из полушарий) на доли:

  • Лобная.
  • Височная.
  • Теменная.
  • Затылочная.
  • Островок.

Под затылочными долями находится мозжечок, или «малый мозг». У него три пары «ножек», через которые он получает крайне важную информацию из коры, спинного, ствола головного, ганглиев и других источников. Это крайне важная часть, хоть и незначительная по размерам.

Он выполняет функции коррекции погрешностей, которые могут закрасться с поступающими и исходящими сигналами. В нем содержится до 10% нейронов, которыми располагает центральная нервная система человека. Особенно богат ими так называемый зернистый слой.

Функции

Основная деятельность БП связана со следующими важнейшими человеческими функциями и качествами:

  • Мышление.
  • Память.
  • Речь.
  • Проявления и особенности личности.
  • Творческие способности, таланты и умения.

Большие полушария неодинаковы – они отвечают за разные функции. Правое несет ответственность за способность к образному мышлению и всему, что с ним связано. Левое полушарие связано с абстрактным и возможностью говорить. Так что при заболеваниях и травмах этого участка мозга человек лишается связной речи.

Схема 1

Полушария отделяются друг от друга продольной щелью, в глубине которой находится мозолистое тело, соединяющее их друг с другом. Поперечная разделяет затылочные доли от мозжечка, а он граничит с продолговатым мозгом, соединяющимся со спинным. Вес больших полушарий составляет от 78 до 90% массы органа.

Кора полушарий большого мозга имеет слои, формирующие ее архитектонику:

  • Молекулярный.
  • Наружный зернистый.
  • Слой пирамидальных нейронов.
  • Внутренний зернистый.
  • Ганглионарный слой. Его еще называют внутренний пирамидный или клетки Беца.
  • Мультиморфные клетки.

Кора – это высокоорганизованный анализатор, позволяющий обрабатывать получаемую извне информацию через органы чувств – зрение, слух, осязание, обоняние, вкус. Она содержит больше клеточной жидкости, чем белое вещество, снабжена большим количеством кровеносных сосудов. Кора больших полушарий участвует в формировании кортикальных рефлексов.

Борозды и извилины

Поверхность большого мозга покрыта так называемым паллиумом, или плащом. Именно он образует складки, которые принято называть извилинами и бороздами. Состоит паллиум из серого и белого вещества.

Большие полушария головного мозга покрыты узнаваемой глубокой складчатостью, образованной бороздами и извилинами. Они придают человеческому мозгу характерный вид, увеличивая площадь коры. Рисунок извилин индивидуален не только для каждой конкретной личности, но и даже для полушарий одного мозга.

Каждое из них имеет строение, состоящее из разных видов поверхностей:

  • Верхнелатеральная поверхность, имеющая выпуклую форму и непосредственно прилегающая к внутренней части свода черепа.
  • Нижняя, располагающаяся передним и средним участком глубоко на основании черепа, а задним – на верхней части мозжечка.
  • Медиальная поверхность, находящаяся по направлению к щели, разделяющей оба полушария.

Каждый из отделов мозга имеет собственный «рисунок» извилин и борозд.

Мозг

Борозды принято делить на три категории:

  • Первая, или постоянные, главные. Их 10, они менее других подвержены изменениям, возникают на ранних этапах формирования мозга и имеют общие черты для всех людей и животных.
  • Вторая категория, или непостоянные борозды. Они представляют собой складки на поверхности полушарий, индивидуальные для конкретной особи. Они могут иметь различное количество или даже полностью отсутствовать. Непостоянные борозды глубокие, но мельче, чем представители первой категории.
  • Третья, или непостоянные борозды – бороздки. Они обычно намного меньше и мельче, чем предыдущие, имеют различные меняющиеся очертания, их расположение связано с этническими чертами или персональными особенностями. Бороздки третьей категории не передаются по наследству.

Мозг и врач

Рисунок можно сравнить с отпечатками пальцев, так как он отличается индивидуальностью и никогда не бывает полностью идентичным даже у ближайших родственников.

Последствия повреждения долей БП

Кора больших полушарий человеческого головного мозга не дублирует структур подкорки, поэтому любое ее повреждение влечет за собой различные нарушения. Они отличаются в зависимости от того, какой участок оказывается травмированным. Интересно, что в коре нет конкретных центров управления отдельными мышцами, а только общий набор «правил» их работы.

Повреждения определенных долей больших полушарий приводят к следующим последствиям:

  • Лобная – наибольшая часть. Две лобные части составляют половину всего переднего мозга. Кора этой доли называется ассоциативной, потому что вся информация приходит именно в этот участок. Она ответственна за речь, поведение, чувства, обучение. При серьезных травмах этой части головного мозга, образовании опухолей, кровоизлияний у человека нарушаются связи между видом, вкусом, запахом, формой предмета и его названием, то есть, например, пациент видит яблоко, может его понюхать, потрогать и съесть, но не понимает, что именно у него в руках. Также в центральной передней извилине лобной доли расположена двигательная. Ее повреждение приводит к изменению поведения, расстройствам координации и движения. Установлено, что врожденная недоразвитость лобной доли или ее повреждение в раннем детском возрасте, особенно участка, отвечающего за эмоции, приводит к появлению антисоциальных личностей и серийных убийц, опасных маньяков и просто социопатов, мелких домашних тиранов, страдающих отсутствием эмпатии. Центры, отвечающие за обоняние и вкус, расположены на внутренних поверхностях лобных и височных долей, поэтому травмы этих участков мозга зачастую приводят к нарушению или полной потере этих функций.
  • Височная область отвечает за слуховой центр. Кроме полной или частичной глухоты патологии в этой зоне могут приводить к так называемой сенсорной афазии Вернике или глухоте на слова. Пациент способен все прекрасно слышать, но слов он попросту не понимает, словно с ним разговаривают на незнакомом иностранном языке. Возникает такая афазия при поражении аналитического центра речи (центра Вернике).
  • Теменная часть, а именно ее центральная задняя извилина, управляет кожно-мышечной чувствительностью. Поэтому ее повреждение влечет за собой утрату этих ощущений или сильное их притупление. Поражение передней части темени приводит к проблемам с точными движениями, центральная отвечает за основные движения, а задняя – за осязательные функции. Травмы или заболевания этих областей провоцируют соответствующие проблемы со здоровьем.
  • Затылочная доля имеет зрительный центр, призванный регулировать, опознавать и обрабатывать информацию, поступающую от органов зрения. Любые проблемы в этой зоне сказываются на качестве восприятия изображения, а сильные травмы могут вызвать слепоту – временную или постоянную. Верхняя часть затылочной области отвечает за зрительное узнавание, поэтому человек с проблемами на этом участке не может распознавать лица или не воспринимает окружение.
  • Островковая область не видна, если рассматривать поверхность головного мозга. Многие ученые не выделяют ее как отдельный элемент полушарий, а считают частью других долей. Поэтому характеристики патологий такие же, как и у ближайших отделов – лобного и височного.

Строение головного мозга постепенно приоткрывает все свои тайны, позволяя ученым узнавать взаимосвязи между его отдельными частями и поведением, характером, здоровьем и эмоциями человека. В нем еще много неизвестного, но тщательное изучение позволяет углубиться в источники множества заболеваний, которые еще недавно считались неизлечимыми.

При всем сходстве нашего мозга с аналогичными структурами других млекопитающих орган человека и большие полушария в первую очередь – это уникальное создание природы, которое и делает нас людьми разумными.

Функции коры больших полушарий

Раньше считалось, что высшие функции мозга человека осуществляются корой больших полушарий. Еще в прошлом веке было установлено, что при удаление коры у животных, они теряют способность к выполнению сложных актов поведения, обусловленных приобретенным жизненным опытом. Сейчас установлено, что кора не является высшим распределителем всех функций. Многие ее нейроны входят в состав сенсорных и двигательных систем среднего уровня. Субстратом высших психических функций являются распределительные системы ЦНС, в состав которых входит и подкорковые структуры, и нейроны коры. Роль любой области коры зависит от внутренней организации её спналтических связей, а также ее связей с другими образованиями ЦНС. Вместе с тем. у человека в процессе эволюции произошла кортиколизация всех, в том числе и жизненно важных висцеральных функций. Т.е. их подчинение коре. Она стала главной интегрирующей системой всей ЦНС. Поэтому в случае гибели значительной части нейронов коры у человека, его организм становится нежизнеспособным и погибает в результате нарушения гомеостаза (гипотермия мозга). Кори головного мозга состоит из шести слоев:

I. Молекулярный слой, самый верхний. Образован множеством восходящих дендритов пирамидных нейронов. Тел нейронов в нем мало. Этот слой пронизывают аксоны неспецифических ядер таламуса относящихся к ретикулярной формации. За счет такой структуры слой обеспечивает активацию всей коры.

2-Наружный зернистый слой. Формируется плотно расположенными мелкими нейронами, имеющими многочисленные синаптические контакты между собой. Благодаря этому наблюдается длительная циркуляция нервных импульсов. Это является одним из механизмов памяти.

3. Наружный пирамидный слой. Состоит из мелких пирамидных клеток. С помощью их и клеток второго слоя происходит образование межкортикальных связей, т.е. связей между различными областями коры.

4. Внутренний зернистый слой. Содержит звездчатые клетки, на которых образуют синапсы аксоны переключающих и ассоциативных нейронов таламуса. Сюда поступает вся информация от периферических рецепторов.

5. Внутренний пирамидный слой. Образован крупными пирамидными нейронами, аксоны которых образуют нисходящие пирамидные пути, направляющиеся в продолговатый и спинной мозг.

6. Слой полиморфных клеток. Аксоны его нейронов идут к таламусу.

Корковые нейроны образуют нейронные сети, включающие три основных компонента:

1. афферентные или входные волокна.

2.интернейроны

3. эфферентные — выходные нейроны. Эти компоненты образуют несколько уровней нейронных сетей.

1. микросети. Самый нижний уровень. Это отдельные межнейронные синапсы с их пре- и постсинаптическими структурами Синапс является сложным функциональным элементом, имеющим внутренние саморёгуляторные механизмы. Нейроны коры имеют сильно разветвленные дендриты. На них находится огромное количество шипиков в виде барабанных палочек. Эти шипики служат для образования входных синапсов. Корковые синапсы чрезвычайно» чувствительны к внешним воздействиям. Например, лишение зрительных раздражений, путем содержания растущих животных в темноте, приводит к значительному уменьшению синапсов в зрительной коре. При болезни Дауна синапсов в коре также меньше, чем в норме. Каждый шипик образующий синапс, выполняет роль преобразователя сигналов идущих к нейрону.

2. Локальные сети. Новая кора слоистая структура, слои которой образованы локальными нейронными сетями. К ней через таламус и обонятельный мозг, могут приходить импульсы от всех периферических рецепторов. Входные волокна проходят через все слои, образуя синапсы с их нейронами. В свою очередь, коллатерали входных волокон и интернейроны этих слоев образуют локальные сети на каждом уровне коры. Такая структура коры обеспечивает возможность обработки, хранения и взаимодействия различной информации. Кроме того, в коре имеется несколько типов выходных нейронов. Практически каждый ее слой дает выходные волокна, направляющиеся к другим слоям или отдаленным участкам коры.

3. Корковые колонки. Входные и выходные элементы с интернейронами образуют вертикальные корковые колонки пли локальные модули. Они проходят через все слои коры. Их диаметр составляет 300-500 мкм. Образующие эти колонки нейроны концентрируются вокруг таламо-кортикального волокна, несущего определенный вид сигналов. В колонках имеются многочисленные межнейронные связи. Нейроны 1-5 слоев колонок обеспечивают восприятие и переработку поступающей информации. Нейроны 5-6 слоя образуют эфферентные пути коры. Соседние колонки также связаны между собой. При этом возбуждение одной сопровождается торможением соседних. В определенных областях коры сосредоточены колонки, выполняющие однотипную функцию. Эти участки называются цитоархитектоническими полями. В коре человека их 53. Поля делят на первичные, вторичные, третичные.

Первичные обеспечивают обработку определенной сенсорной информации.

Вторичные и третичные взаимодействие сигналов разных сенсорных систем. В частности, первичное соматосенсорное поле, к которому идут импульсы от всех кожных рецепторов (тактильных, температурных, болевых) находится в области центральной задней извилины. Больше всего места в коре занимает представительство губ, лица, кистей рук. Поэтому при поражениях этой зоны изменяется чувствительность соответствующих участков кожи. Представительство проприорецепторов мышц и сухожилий, т.е. моторная кора занимает переднюю центральную извилину. Импульсы от проприорецепторов нижних конечностей идут к верхней части извилины. От мышц туловища к средней части. От мускулатуры головы и шеи к ее нижней части. Наибольшую площадь этого поля также занимает представительство мускулатуры губ, языка, кистей и лица.

Импульсы от рецепторов глаза поступают в затылочные области коры около шпорной борозды. Поражение первичных полей приводит к корковой слепоте, а вторичных и третичных — потере зрительной памяти. Слуховая область коры расположена в верхней височной извилине и поперечной извилине Гешля. При поражении первичных полей зоны развивается корковая глухота. Периферических — трудности в различении звуков. В задней трети верхней височной извилины левого полушария находится сенсорный центр речи — центр Вернике. При его патологических изменениях теряется способность к пониманию речи. Двигательный центр речи — центр Брока, располагается в нижней лобной извилине левого полушария. Нарушения в этой части коры приводят к потере способности произносить слова.

Функциональная асимметрия полушарий.

Передний мозг образован двумя полушариями, которые состоят из одинаковых долей. Однако они играют разную функциональную роль. Впервые различия между полушариями описал 1863 г. невропатолог Поль Брэка. обнаруживший, что при опухолях левой лобной доли теряется способность к произношению речи. В 50-х годах XX века Р.Сперри и М.Газзанига исследовали больных, у которых с целью прекращения эпилептических припадков была произведена перерезка мозолистого тела. В нем проходят комиссуральные волокна, связывающие полушария. Умственные способности у людей с расщепленным’ мозгом не изменяются. Но с помощью специальных тестов обнаружено, что функции полушарий отличаются. Например, если предмет находится в поле зрения правого глаза, то зрительная информация поступает в левое полушарие, то такой больной может назвать его, описать его свойства. прочитать или написать текст.

Если же предмет попадает в поле зрения левого глаза, то пациент даже не может назвать его и рассказать о нем. Он не может читать этим глазом. Таким образом, левое полушарие является доминирующим в отношении сознания, речи, счета, письма, абстрактного мышления, сложных произвольных движений. С другой, стороны, хотя правое полушарие не имеет выраженных речевых функций, оно в определенной степени способно понимать речь и мыслить абстрактно. Но в значительно большей мере, чем левое, оно обладает механизмами сенсорного распознавания предметов образной памяти. Восприятие музыки целиком является функцией правого полушария. Т.е. правое полушарие отвечает за неречевые функции, т.е. анализ сложных зрительных и слуховых образов, восприятие пространства, формы. Каждое полушарие изолированно принимает, перерабатывает и хранит информацию. Они обладают собственными ощущениями, мыслями, эмоциональными оценками событий. Левое полушарие обрабатывает информацию аналитически, т.е. последовательно, а правое одномоментно, интуитивно. т.е. полушария используют разные способы познания. Вся система образования в мире направлена на развитие левого полушария, т.е. абстрактного мышления, а не интуитивного. Несмотря на функциональную асимметрию, в норме полушария работают совместно, обеспечивая все процессы человеческой психики.

Пластичность коры.

Некоторые ткани сохраняют способность к образованию новых клеток из клеток-предшественников в течение всей жизни. Это клетки печени, кожи энтероциты. Нервные клетки не обладают такой способностью. Однако у них сохраняется способность к образованию новых отростков и синапсов т.е каждый нейрон способен при повреждении отростка образовывать новые. Восстановление отростков может происходить двумя путями: путем формирования нового конуса роста и образования коллатералей. Обычно росту нового аксона препятствует возникновение, глиального рубца. Но несмотря на это новые синаптические контакты образуются коллатералям и поврежденного аксона. Наиболее высока пластичность нейронов коры. Любой ее нейрон запрограммирован на то, что при его повреждении он активно пытается восстановить утраченные связи. Каждый нейрон вовлечен, а конкурентную борьбу с другими за образование синаптических контактов. Это служит основой пластичности нейронных корковых сетей. Установлено, что при удалении мозжечка нервные пути, идущие к нему, начинают прорастать в кору. Если в интактный мозг пересадить участок мозга другого животного, то нейроны этого кусочка ткани образуют многочисленные контакты с нейронами мозга реципиента.

Пластичность коры проявляется как в нормальных условиях. Например, при образовании новых межкортикальных связей в процессе обучения, так и при патологии. В частности, утраченные при поражении участка коры функции берут на себя ее соседние поля или другое полушарие. Даже при поражении обширных областей коры вследствие кровоизлияния, их функции начинают выполнять соответствующие области противоположного полушария.

Элгктроэнцефалография. Ее значение для экспеперементальных исследований и клиники.

электроэнцефалография (ЭЭГ — это регистрация электрической активности мозга с поверхности кожи головы. Впервые ЭЭГ человека зарегистрировал в 1929 г. немецкий психиатр Г.Бергер. При снятии ЭЭГ на кожу накладывают электроды, сигналы от которых усиливаются и подаются на осциллограф и пишущее устройство. В норме регистрируются следующие типы спонтанных колебаний:

1. а-ритм. Это волны с частотой 8-13 Гц. Наблюдается в состоянии бодрствования, полного покоя и при закрытых глазах. Если человек открывает глаза а-ритм сменяется р-ритмом. Это явление называется блокадой а-ритма.

2. В-ритм, Его частота от 14 до 30 Гц. Наблюдается при деятельном состоянии мозга и читается по мере повышения интенсивности умственной работы.

3. (гама) — ритм. Колебания с частотой 4-8 Гц. Регистрируется во время засыпания.

поверхностного сна и неглубоком наркозе.

4. (сигма) — ритм. Частота 0,5-3,5 Гц. Наблюдается при глубоком сне и наркозе.

Чем ниже частота ритмов ЭЭГ, тем больше их амплитуда. Помимо эти основных ритмов регистрируются и другие ЭЭГ феномены. Например, по мере углубления сна появляются сонные веретена. Это периодическое увеличение частоты и амплитуды тета- ритма. При ожидании команды к действию возникает отрицательная Е-волна ожидания и т.д.

В эксперименте ЭЭГ используют для определения уровня активности мозга, а в клинике для диагностики эпилепсии (особенно скрытых форм), а также для выявление смерти мозга (кора живет 3-5 мин, стволовые нейроны 7-10, сердце 90. почки 150).

Большие полушария головного мозга: строение и функции

Жажда познания, стремление к высшим идеалам, феноменальные умственные способности… Речь идет, конечно же, о человеке. Именно эти качества отличают нас от мира животных. Материальным носителем, иначе говоря, жестким диском, на котором записаны психосоматические программы, названные нами, являются полушария большого мозга. Данная статья будет посвящена изучению их строения и функций.

Большой мозг

Органогенез – образование системы осевых органов и других частей тела у зародыша человека – включает в себя стадию нейрулы. Хорда, кишечник и нервная трубка появляются сразу же за образованием третьего зародышевого листка – мезодермы. Смыкающиеся на спинной стороне эмбриона нервные валики формируют нервную трубку. Впоследствии она полностью отделяется от остальной зоны эктодермы. Передний конец нервной трубки раздувается и делится на пять частей – первичных мозговых пузырей. Теперь из них будут образовываться главные отделы центральной нервной системы.

Строение больших полушарий

Большие полушария и кора, которая их покрывает, филогенетически являются самыми молодыми структурами мозга, так как возникли позже других отделов.

Архитектоника коры головного мозга

Оба полушария — правое и левое — связаны между собой мозолистым телом. Оно не только является физическим носителем нервных окончаний — аксонов, выполняя функцию многожильного проводящего органа, содержащего огромное количество нервных окончаний.

Большие полушария

Структура также несет в себе центры двигательных и поведенческих актов, а ее патология выражается, например, в появлении симптомов тяжелейшего психического расстройства – эпилепсии.

Большие полушария снаружи состоят из скоплений тел нейронов – высокоспециализированных клеток нервной ткани. Визуально верхняя структура мозга имеет серый цвет, поэтому так и называется: серое вещество головного мозга. Внутрь от него ответвляются многочисленные отростки – дендриты. В совокупности с очень длинными волокнами аксонов, внедряющихся в ткани коры, дендриты формируют белое вещество, располагающееся под зонами коры больших полушарий. В нем, как мозаика, разбросаны сгустки тел нейронов, получивших название ядер. В анатомии принято определять эту часть мозга как подкорку. Ее считают древним образованием, возникшим уже у первых представителей позвоночных животных.

Строение больших полушарий

Чтобы увеличить общую площадь мозга, сохранив незначительный объем черепной коробки, в нем почти две трети поверхности скрыто в форме складок. Они носят название извилин. В анатомических атласах выделяют три главные:

  • боковую борозду,
  • затылочно-теменную,
  • центральную.

По ним легко различить четыре доли коры больших полушарий. Это височная, затылочная, лобная, теменная доли, они анатомически соответствуют частям черепа.

Доли больших полушарий

Уникально внутреннее строение коры, похожей на шестиэтажный дом. Каждый этаж – слой – состоит из абсолютно разных по внешнему виду, плотности и форме нейронов. Перечислим эти слои:

  • внутренний пирамидный,
  • полиморфный,
  • внутренний зернистый,
  • пирамидный,
  • наружный зернистый,
  • молекулярный.

Интересным представляется постэмбриональный период развития коры. Установлено, что наибольшие изменения происходят в первом, а затем в шестимесячном и полуторагодовалом интервале жизни ребенка.

Сенсорные и двигательные участки мозга

Зоны больших полушарий ответственны за многоликую и сложную жизнедеятельность человеческого организма. Огромное количество вновь возникающих рефлекторных дуг, выполняющих роль материальных носителей условных рефлексов, постоянно создаются в коре головного мозга. Пять главных сенсорных комплексов — обонятельная система, зрительная, осязательная, вкусовая и слуховая — являются теми каналами, по которым мы получаем наибольшее количество различной информации. Кроме них, мы способны дифференцировать ощущения жажды, боли, температуры, пространственного расположения тела, голода.

Наукой четко определены границы каждой из перечисленных зон, их характеристика изучается при рассмотрении строения каждого вида анализаторов. В них участки больших полушарий, в которых происходит различение ощущений, называются центральным или корковым отделом любого анализатора. Например, зрительная сенсорная система включает в себя, кроме рецепторов сетчатки и двух зрительных нервов, еще и зрительную зону коры, расположенную в затылочной доле.

Доли коры больших полушарий

Как происходит контроль двигательных реакций

Главная зона, контролирующая мышечную работу, находится в прецентральной извилине больших полушарий. Из этого участка выходят аксоны эфферентных нейронов и направляются к скелетной мускулатуре, вызывая сокращения актиновых и миозиновых миофибрилл. Иннервация основной двигательной зоны происходит по коллатеральному принципу: возбуждаются мышцы части тела, противоположной полушарию мозга. Исключением будет лицевая область, которая иннервируется напрямую.

Полушария большого мозга

Дополнительно в мозге существует еще один двигательный участок, расположенный ниже прецентральной извилины. Сокращения скелетной мускулатуры могут также происходить и в случае возбуждения сенсорных зон, особенно зрительной и слуховой. Например, резкий внезапный звук может вызвать вздрагивание рук или головы.

Ассоциативные зоны

Важнейшие функции интеграции различных ощущений, возникающих под действием сигналов окружающего мира, выполняют несколько участков правой и левой долей больших полушарий. Анатомически они располагаются в префронтальной ассоциативной области, а также в участках теменно-затылочно-височной части коры. Ассоциативные зоны являются приемниками импульсов, поступающих из сразу нескольких анализаторов.

Зоны больших полушарий

Далее нервные клетки анализируют полученную информацию и по своим центробежным аксонам направляют возбуждение в определенные участки организма, вызывая его смешанные зрительно-слуховые и моторные реакции. Например, зона понимания речи (область Вернике) является ведущей не только в процессе формирования речевых функций, но также обеспечивает развитие высших свойств интеллекта. В верхней затылочной и задней теменной долях расположена ассоциативная зона, анализирующая положение тела в пространстве.

Зоны наименования объектов и первичной обработки чтения

В коре головного мозга есть еще одна область, называемая зоной первичной обработки чтения. Эта зона может воспринимать импульсы, идущие от зрительной и слуховой сенсорных систем. Участок наименования объектов находится в височной доле и в латеральной части передней зоны затылочной доли, получает информацию от слухового анализатора. Одновременно происходит подключение части импульсов от зрительной зоны, расположенной в затылочном отделе коры головного мозга. Обе зоны являются базой для развития высших психических процессов: абстрактного мышления, анализа и синтеза полученной визуальной и слуховой информации, лежащих в основе интеллектуальной деятельности человека.

Основные процессы деятельности коры

Возбуждение и торможение – важнейшие явления, присущие нервной ткани. Нейроны больших полушарий, образующие определенные зоны, распространяют (иррадиируют) электрические импульсы на другие структуры мозга. Например, ухудшение засыпания человека, длительно сидящего перед монитором компьютера, объясняется иррадиацией возбуждения зрительного центра мозга на соседние его участки. Сам же процесс засыпания послужит примером иррадиации торможения. Концентрация нервных процессов приводит к противоположным результатам: зона возбуждения или торможения, наоборот, сокращает свою площадь. Концентрация возбуждения наблюдается, например, у авиадиспетчера во время работы, связанной с обеспечением взлета или посадки самолета.

Индукция — это наведение в определенном участке больших полушарий противоположного нервного процесса.

Зоны коры больших полушарий

Так, положительная индукция стимулирует усиление возбужденных участков мозга вблизи очага торможения. Отрицательная индукция характеризуется противоположным протеканием нервных процессов. В единицу времени мозг получает огромное количество сигналов от рецепторов всех органов и систем. Все названные выше процессы, происходящие в коре головного мозга, являются первопричиной поведенческих реакций как высших млекопитающих животных, так и человека.

В нашей статье мы рассмотрели строение и функции коры, покрывающей большие полушария, а также определили важнейшие функции зон головного мозга.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *