Как своими руками сделать абак: Видео мастер-класс: делаем «Абак» | Журнал Ярмарки Мастеров

Содержание

как сделать абак своими руками — 25 рекомендаций на Babyblog.ru

Давно хотела написать этот пост, и вот наступил переломный момент в развитии и уже во многие игры начинаем играть по правилам, пока конечно не по тем, что указаны в рекомендациях производителями, но все же))) Ладушка уже с интересом слушает как я предлагаю играть и начинает очень азартно, но потом переходим на метод «я сама» и тут продолжение игр всегда непредсказуемо, т.к. вариантов игр с данными пособиями и игрушками действительно масса. Это было небольшое лирическое вступление)) О чем я хочу сказать? О том, что эти игры и игрушки я считаю, как сейчас можно говорить «mast have», а по-русски — обязательно иметь. Эти игрушки (опять же модное слово) «развивающие». 


 

Конструктор Кроха. Самый дешевый и простой  для начала конструирования. Большие блоки брать не стала, мне кажется они менее интересны, хотя наверняка более просты в обращении. Мне понравилось, что в этом конструкторе есть фигурки (хотя их сложно так назвать, это лишь подобие фигурок)) людей. Есть деревья и заборчик. Что мы только не строили из этого конструктора! С постройками дочка может играть по 30-40 минут не отрываясь, лишь озвучивая свои действия по подселению и переселению жителей (если это дом))


Конструктор Веселый городок. Самый первый наш конструктор. По нему мы учили цвета и объемные фигуры, изучали что кубик не катится, а цилиндр вполне себе) Сейчас строим башни, ступеньки, столы и стулья для кукольных трапез. 


Деревянный конструктор Томик. Приятный маленький конструктор для маленьких ручек. Конечно ничего грандиозного из него не построишь, но мы его используем для помощи в других постройках, или как пирожные и тортики для тех же кукольных застолий. 


Кубики вкладыши. До года изучали по ним цифры, животных, транспорт, цвета. Сейчас строим многоэтажки и селим туда зверей и балансируем на них))

 

 

Пирамидка Клоун. Деревянная, приятная, качается! Игр с ней масса: колечки катаем, кукол «бубликами» кормим, в вышеуказанные кубики по цветам раскладываем и пр. У нас есть большая пластмассовая еще, но именно эта малютка особо любима!

 

Паровозик-абака. И транспорт и развитие моторики, изучали фигуры и цвета, сейчас шнуруем. Простая приятная игрушка!


Мозаика. Потрясающая тренировка для пальчиков и развития воображения! Мы и дорожки из нее строим и фигуры разные. А еще эти соты нам случат тарелочками для куколок или пирожками.


Мозаика комбинированная. Новый этап моторики мы сопровождаем особой техникой установки фишек 2-3 пальчиками. Прекрасная игра, планирую сделать много шаблонов к ней.


Шнуровки. Ассорти и Фрукты. Отличная игра! Вариантов также масса! И шнуруем, и кормим фруктами кукол и зверей, и ищем парочки, и в зоопарк играем, и сортируем по цветам, и строим пирамидки, и бусы делаем под каждый наряд (учим сочетаемость цветов) и многое многое другое.



Кубики Никитина Пока строим только одноцветные дорожки для животных, или башни (высокие и низкие), или добавляем в постройки из других конструкторов.


Блоки Дьенеша. По этому набору мы начали заниматься недавно. Цвета, формы мы знаем, сейчас уточняем понятия тоньше-толще-самый толстый (с последним проблема пока). Строим пирамидки, дополняем постройки и проч. По альбому еще не занимаемся, рановато)


Палочки Кюизенера Пока строим дорожки, половички для животных и повторяем цвета. Пробуем учить понятия короткий, длинный, еще длинее, самый длинный. (лдинный-короткий мы знаем давно, в остальных путаемся)


Игра Разноцветные слоники. По правилам конечно же еще не играем. Ладушка просто обожает этих слоников, очень бережно с ними играет! Мы их прячем под колпачки и угадываем где какой, строим башни из колпачков, устанавливаем по нескольку слоников на каждый колпачок (очень сложное занятие, но дочка справляется)


Игра Веселые черепашки  Первое знакомство — подбирали каждой черепашке панцирь её цвета, сейчас перешли на этап подбора панциря по картинке. 


Грибная полянка Обожаю деревянные игрушки! Сортируем по размеру, цветам, рисунку на шляпках, собираем в корзинку, кормим кукол, варим суп.


Набор инструментов. Дочка обожала этот набор 2 месяца, сейчас вспоминает про него реже, но все же играет. Купили после того, как она настойчиво отбирала папину отвертку)) И не прогадали!


Магнитный планшет для рисования. Девочки, так дешево и такое полезное изобретение!!! Я не могу нарадоваться на эту вещицу. Купила до кучи в дорогу и практически весь отпуск дочка не выпускала его из рук при любом удобном случае! Рисовали животных, цифры, буквы,людей, корабли… разыгрывали сказки ( в виде маленьких комиксов), угадывали животное по его части… и очень много всего еще! 



А еще я привязала трубочку от коктейля к нитке и магнитной ручке этого планшета и получили магнитную удочку!!! Кидаем скрепки и резиночки для волос (у нас как раз были с металлическим соединение и очень полезная игра готова! 

Премию изобретателю!!!

Мастерская Дино: делаем счеты | rastishka.by

Абак, или попросту говоря счеты, — это древнейшее приспособление для арифметических вычислений. Он был известен еще до нашей эры, и до настоящего времени его успешно применяют для обучения детей счету. Попробуем сделать абак своими руками и проверим эффективность самодельных счетов на наших маленьких Вундеркиндах.

Материалы для работы:
— плотный картон для основы,
— 55 больших цветных деревянных бусин,
— толстые прочные нитки,
— ножницы,
— краска,
— кисть.

Ход работы

Шаг 1. Из толстого картона вырежьте квадрат для основы и покрасьте его в ваш любимый цвет. Ребенок охотно поможет.

Шаг 2. Взрослый должен сделать 10 надрезов на каждой стороне — это необходимо, чтобы закрепить нитки. Предварительно измерьте линейкой расстояние между «дорожками».

Шаг 3. Нарежьте 10 кусочков ниток, предварительно убедившись, что длины достаточно, чтобы покрыть ширину абака. Взрослый может отмерять одну нитку для образца, а остальные ребенок отрежет самостоятельно.

На первую нитку нанижите одну бусину, на вторую — две и так далее до десяти. Отличный повод потренировать счет и моторику!  Внимательно следите, чтобы ваш маленький помощник не положил бусинки в рот!

Шаг 4. Закрепите первую нитку с бусинкой, вставив в прорези и завязав на узелок с обратной стороны заготовки. Аналогично прикрепите остальные. Пусть ребенок пересчитывает бусинки и подает вам нужные ниточки.

Шаг 5. Проверьте, все ли правильно вы сделали. Удачных подсчетов! 

Уважаемые читатели! Расскажите, как у вашего малыша складываются отношения с арифметикой? Какие игры и пособия вы делаете своими руками и используете для обучения счету?

Студия «Абак». Интерьеры и ремонт «под ключ» — отзывы, фото проектов, сайт, Дизайнеры интерьера, Москва, RU

В 1991 году группа единомышленников с опытом работы в строительстве создала фирму, направленную на ремонт и отделку помещений разного назначения. Чтобы выгодно отличаться от других ремонтно-строительных фирм возглавил компанию дизайнер. Таким образом, мы стали одними из первых, кого приглашали, чтобы создать красоту и уют, а не просто побелить потолки и покрасить стены. Дизайн и стиль до сих пор остаются для нас первостепенными задачами. А использование в работе самых современных материалов, хорошего инструмента и новейших технологий позволяет нам воплощать в жизнь практически любые архитектурные решения с неизменным качеством. Когда фирма только начинала свою деятельность, нам каждый раз приходилось ломать голову над тем, как сделать помещение красивым и удобным из тех скудных и некачественных материалов, что продавались в Москве. С тех пор прошло много времени, и технологии строительства и отделки сильно изменились. Наша компания всегда следила за этими изменениями и стала одной из первых предлагать своим клиентам такие новшества, как «умный дом», система центрального кондиционирования, центральный пылесос или мебель и предметы интерьера, спроектированные и изготовленные на заказ, специально для Вас.

С каждым годом мы продолжаем совершенствоваться и заключаем договора о сотрудничестве в самых разных областях бизнеса со все большим числом фирм, чтобы делать Вашу жизнь красивее и удобнее.

Предоставляемые услуги:

проект дизайна интерьеров для любого жилого и нежилого помещения; отделка и ремонт квартир или объектов любого назначения; проектирование и строительство загородного жилья, которое будет учитывать все пожелания клиента; разработка и изготовление эксклюзивной мебели и аксессуаров оформление разрешительной и проектной документации помощь в подборе и покупке необходимых материалов для ремонта у ведущих продавцов и компаний-производителей.

География работ:

Москва, Центральная Россия

Абака (Абак)

Абака (Абак) – от латинского «abacus» — «доска»; опорная плита в верхней части капители колонны классического ордера, полуколонны или пилястры. Зачастую абака в плане имеет четырехугольную форму. Функция абаки – перенос тяжести фронтона или перегородки на ствол колонны, поэтому вид опорной плиты достаточно прост и утилитарен. Но в некоторых случаях, в частности, в капителях коринфского и римского композитного ордера, абака имела ряд декоративных элементов.

Схематическое изображение колоннады дорического ордера, где абаки имеют форму простого четырехугольника.

В капителях колонн коринфского и римского композитного ордера абаки имеют вид четырехугольника с вогнутыми внутрь сторонами и скошенными углами, а также украшены скульптурными элементами – маленькими листьями аканта или орнаментом. В таком случае, также абака дополняется прямолинейным архитектурным профилем трапециевидной формы, обычно применяемым в карнизах. Иногда лепнина, изображающая листья, заменяется медальонами с изображением животных, цветов. В капителях колонн композитного ордера абаки могут иметь очень вогнутые стороны, расположенными под острым углом. Внутренние стороны абака, в таком случае, украшаются лепным орнаментом в виде бусин.

Абака капители колонны композитного ордера, стороны которой украшены небольшими лепными листьями аканта.

 

По своей сути, абака является опорной несущей деталью, визуально завершающей капитель и соединяющей колонну с антаблементом. В античном зодчестве форма и размер абак высчитывались с расчетом веса несомой верхней конструкции. В ионическом, коринфском и композитном ордерах абаки капителей колонн имеют весьма скромные габариты, поэтому большая прочность конструкции обеспечивается увеличенным количеством колонн.

Абака капители колонны тосканского ордера имеет размеры, наибольшие среди колонн прочих ордеров. Современное воплощение подобной детали из полиуретана можно посмотреть в каталоге на сайте.

Очень заметны абаки капителей колонн дорического и тосканского ордеров – они имеют наиболее внушительные размеры и ширину, а также никогда не дополняются декором.

Абаки в тосканском и дорическом ордерах заметно выступают за пределы капители. Абаки капителей данных архитектурных ордеров различаются наличием облома, прямолинейного профиля, который в капители колонны тосканского ордера располагается в верхней части абаки. Абаки же колонн дорического ордера имеют наиболее простую, лишенную любых посторонних элементов, форму.

Что такое абакус? Как считать на абакусе?

Автор IQКлуб На чтение 6 мин Просмотров 8.2к. Опубликовано

Многие люди слова абакус и соробан слышат, чуть ли не впервые. А ведь эта система подсчетов использовалась в Древней Греции, Риме и Китае еще за пять веков до нашей эры. Легкая система подсчета положила начало нашим классическим счетам с костяшками, но абак намного проще и понятней в использовании.

Детям система устного счета абакус полезна не только тем, что они научатся быстро считать и понимать цифры, со временем они обучаются ими пользоваться ментально, в воображении. Эта «игра» позволяет научить даже первоклашку очень быстро считать и выполнять абсолютно все арифметические действия, сначала с помощью специального прибора, а потом и в уме, для этого ему нужно будет только научиться считать до десяти.

Как выглядит абак?

Специальные счеты, используемые в системе ментального счета абакусе, называются абак, линейка или также абакус. Они имеют классический вид:

Это рамка со спицами, на которые надеты костяшки, по пять штук на каждой. Количество спиц на разных абакусах отличается, а вот костяшек на каждой из них пять, кроме того, одну костяшку на каждой спице отделяет поперечная планка.

Считающий в воображении сам рассчитывает название каждой спицы, на рисунке выше подписано распределение без десятичных знаков, но если они нужны, то первые левые спицы отводятся под них, а уже потом начинаются единицы. (Абакус и абакус с десятичными знаками)

 

Распределяем числа

Чтобы понять, как считать на абакусе, надо просто разобраться, как на нем распределяются цифры. В дальнейшем мы будем использовать распределение на спицах, начиная с единицы, так как будем работать с целыми числами. Чтобы работать с десятичными, нужно для начала разобраться в элементарной арифметике.

Первая правая спица, когда одна костяшка сверху – наименьшее десятичное значение, в подсчетах, если мы считаем миллиарды, значит, наименьшее – миллиард, если десятичные дроби, то тысячные. Далее спицы считаются с умножением на 10.

Для пользования спицами надо запомнить, как распределяется число на абакусе:

  • на спице пять костяшек;
  • костяшка над планкой это 5, если она опущена – это говорит что число больше пяти, если поднята, значит меньше;
  • костяшки ниже планок – 1, 2, 3, 4, сколько поднято костяшек, столько и надо учесть;
  • если костяшка 5 опущена, то прибавляется число костяшек, поднятых снизу, если они не подняты, то значит на спице 5.

Например, число 15 будет выглядеть вот так:

66 вот так:

А 81549 вот так:

Кажущаяся сложность пропадает практически через пять минут, ребенок очень быстро начинает разбираться в самых сложных числах. Главное – понять принцип работы этого прибора.

Как проводить сложение и вычитание на абакусе?

Считать на абакусе достаточно просто. Для понимания возьмем пример 26+34 и сложим его на линейке абаке.

Устанавливаем первое число 26 :

Раскладываем все числа на простые цифры, не забывая, к какой спице они относятся: 2 и 3 к десяткам, а 6 и 4 к единицам. Производим сложение простых чисел. 6+4 и 2+3.

Теперь сдвигаем единицы на первой спице 6+4 =10, то есть на 1 спице надо показать 0, и развести все костяшки по местам, а к двум костяшкам на второй спице добавить еще одну, получим 30:

Но мы добавляли не 4, а 34, поэтому на второй спице надо добавить еще 3 костяшки и показать цифру 6, для этого опускаются снизу 2 костяшки и «5». Итого мы получаем 60.

Сложение всегда начинается с меньшего числа с переходом к большему. Если костяшек на спице получается больше чем 9, тогда на соседней спице добавится еще одна.

В случае с вычитанием система та же, начинаем с меньшего, только если вычитается от меньшей цифры большая, тогда они меняются местами, а с соседней спицы убирается костяшка.

Например, 15-13:

  • ставим 15;
  • раскладываем число на простые цифры 1 и 5 и 1 и 3, от 1 отнимаем 1, от 5 отнимаем 3 и получаем 2:

Эта система расчетов при должной сноровке занимает около двух-трех секунд. Со временем сама линейка уже будет не нужна, она сама будет возникать в мыслях.

Как умножать и делить на абакусе?

Умножение на линейке тоже достаточно простое, для этого нужно только освоить таблицу умножения от 1 до 10 и запомнить одно правило: десятки умножаем на единицы, потом единицы умножаем на единицы. Если ребенок уже разобрался, как считать на абакусе, все действия будут занимать не больше минуты.

Для примера возьмем простое задание 11х5, которое решается в два действия:

  1. 10х5=50.
  2. 1х5=5.

Для начала на абакусе набирается ответ на первый пример, 50:

потом к нему добавляется ответ на второй пример, 5:

И в результате мы видим на абаке ответ 55.

Для проведения более сложных действий, когда берутся более сложные примеры, тогда задание решается в последовательности: десятки умножаются на десятки, единицы на десятки, десятки на единицы, единицы на единицы. То есть, сначала все цифры, постепенно от большего к меньшему перемножаются и набираются последовательно на абаке.

Например, 611 Х24:

Решается это так, нули прячутся и берутся цифры без них, а их количество определяет, на сколько спиц надо сдвинуться влево, кроме того, если результат получился двузначный, значит надо сместиться еще на одну спицу:

  1. 6х2=12 – при умножении результат набираем на той спице, к которой относится число и сдвигаемся вправо на столько спиц, сколько нулей в числе, на которое умножают, в нашем случае в 20 один ноль, то есть результат 12 набирается не на сотнях, а на тысячах. Но если результат имеет две цифры, тогда надо сместиться еще на одну спицу. То есть, в нашем случае 12 набирается на спицах, отвечающих на десять тысяч и тысячи.(12000)
  2. 1х2=2 – единица относится к десяткам, в 20 один ноль, то есть сдвигаемся на одну спицу и добавляем ответ в сотнях.(12200)

1х2=2 единица относится к единицам, а в 20 один ноль, то есть исходя из правил, добавляем ответ в десятках. (12220)

  1. Теперь переходим к следующему порядку и умножаем сотни на единицы, десятки на единицы и единицы на единицы.
  2. 6х4=24 – в 4 нет нолей, мы сдвигаемся только на одну спицу, так как в ответе две цифры, и добавляем 2 костяшки к тысячам и 4 к сотням. (14620)
  3. 1х4=4 – добавляем в десятки 4 костяшки. (14660)
  4. 1х4=добавляем теперь 4 костяшки в единицы. (14664)

Последнее действие можно не делать, но сначала нужно проверить: берем калькулятор, умножаем 611х24, получаем 14664 и радуемся своей сноровке.

Деление проводится по такому же принципу, только производится не сложение результатов на линейке, а вычитание. Сдвигание по спицам происходит слева направо.

Насколько быстро можно работать на абакусе?

Даже на самые сложные действия ребенок, как и взрослый, потратит не больше одной минуты, главное во всем этом деле – практика и понимание, как считать на абакусе. Чем чаще и больше заниматься, тем проще будет перейти на систему ментального вычисления, без каких либо приспособлений. Для начала со сложными примерами понадобится еще ручка и бумага, чтобы расписать последовательность действий и не запутаться, но пара дней практики – и ничего кроме абака уже не понадобится.

Главное – не стесняться перепроверять результат и показывать маленькие победы. Это позволяет стимулировать желание пользоваться этой древней системой. А она, в свою очередь, развивает память, фантазию и логику.

инструкция по созданию креативного аксессуара. Пример работы компьютера

Если взять листок бумаги, ручку принтер, ножницы и клей… В летней компьютерной школе мы иногда предлагаем детям собрать «биокомьютер», то есть вычислительное устройство из того, что валяется в прямом смысле под ногами. Так как дети не очень хорошо знают, как устроены вычислительные устройства, то обычно получается что-то вроде картинки под спойлером. Но некоторые всё же делают счёты или абак.Биокомпьютер

А недавно я натолкнулся на описание модели компьютера, сделанной из бумаги, разработанную в 1968 в лабораториях Белла. Компьютер называется CARDIAC (CARDboard Illustrative Aid to Computation), что приблизительно переводится как Картонное Наглядное Пособие по Вычислениям. То есть на самом деле это не совсем компьютер, так как проводником сигналов, а также арифметико-логическим устройством в нем выступает человек. Тем не менее, он позволяет понять некоторые принципы, лежащие в основе современной вычислительной техники. К тому же, после недолгих поисков, я нашёл описание и материалы для изготовления CARDIAC.

Как устроен компьютер

CARDIAC состоит из двух блоков — памяти и процессора. В процессорный блок вставлены несколько бумажных полосок с помощью которых нужно выбирать выполняющуюся инструкцию. Кроме этого, в блок памяти вставляется лента, куда происходит вывод, а в процессор — лента со входными данными.

Память

Компьютер имеет 100 ячеек памяти с адресами от 00 до 99. Каждая из них может быть использована для хранения одной инструкции или одного трехзначного числа. Любая из ячеек может быть перезаписана, так что при желании можно даже написать самомодифицирующуюся программу. Значения в ячейках заносятся с помощью карандаша, а модифицируются с помощью карандаша и ластика. При этом в ячейке 0 всегда «прошито» значение 001. Его очень удобно использовать для инкремента, так как команд с непосредственными значениями аргументов у компьютера нет. Вот как выглядит оригинальный блок памяти:

Счетчик инструкций

В оригинале в качестве счетчика инструкций используются божья коровка, как на рисунке выше. Она вставляется в специальные отверстия, пробитые в каждой из ячеек памяти. Так как мне не хотелось делать 100 отверстий, то для обозначения счетчика команд я использовал другую божью коровку — просто выкладывал ее на нужную ячейку.

Аккумулятор

Единственный регистр в компьютере — это аккумулятор. Он используется для выполнения арифметических операций (сложение, вычитание, сдвиг), а также для условных переходов. В отличие от ячеек памяти, аккумулятор может хранить 4 десятичных разряда.

Система команд

Каждая инструкция кодируется с помощью трехзначного десятичного числа. Первая цифра — это всегда код операции. Остальные две цифры как правило представляют собой адрес ячейки, которой оперирует инструкция. CARDIAC может «выполнять» 10 различных инструкций (с кодами от 0 до 9):
  • 0 — INP — ввод значения из входной ленты
  • 1 — CLA — загрузка содержимого ячейки памяти в аккумулятор
  • 2 — ADD — прибавление ячейки памяти к аккумулятору
  • 3 — TAC — переход по заданному адресу, если значение аккумулятора отрицательное
  • 4 — SFT — операция сдвига влево и вправо на заданное число десятичных разрядов
  • 5 — OUT — вывод ячейки памяти в выходную ленту
  • 6 — STO — запись аккумулятора в ячейку памяти
  • 7 — SUB — вычитание ячейки памяти из аккумулятора
  • 8 — JMP — безусловный переход по заданному адресу
  • 9 — HRS — остановка и сброс

Изготовление компьютера

Я распечатал прилагаемые материалы на плотной бумаге, вырезал все нужные отверстия, вставил движущиеся полоски вовнутрь и склеил оба блока.

Как это всё работает?

Функционирование компьютера заключается в последовательном выполнении инструкций. Перед началом выполнения, необходимо посмотреть где находится божья коровка (то есть счетчик инструкций) и перемещая полоски набрать значение из этой ячейки памяти в окошке «Instruction Register».

Дальше необходимо следовать по стрелкам, начиная с надписи «Start» и выполнять все предписания. Например, на приведенной картинке нужно сначала переместить счетчик инструкций вперед, а затем добавить содержимое ячейки 41 к аккумулятору. Конечно же вычисления (сложение, вычитание и сдвиг) придется выполнять вручную. Для этого рядом с надписью «Accumulator» есть несколько окошек, позволяющих выполнять сложение/вычитание в столбик.

Пример работы компьютера

Для начала я «ввел» (то есть вписал карандашом в ячейки памяти с 17 по 23) первую из программ, приведенных в руководстве: Эта программа складывает два числа, считываемые со входной ленты, и записывает результат на выходную ленту. Инструкция ввода считывает значение из входной ленты, записывает его в заданную ячейку, а затем передвигает входную ленту на один шаг вперед, чтобы в окошке «Input» появилось следующее значение. При этом придется воспользоваться карандашом (и, возможно, ластиком), чтобы записать значение в ячейку памяти. После выполнения этой программы со входными значениями 42 и 128 состояние памяти стало следующим:

«Быстродействие» компьютера

Какой же обзор компьютера без бенчмарков? Я взял из руководства следующую программу, предназначенную для перемножения двух чисел. Адрес Значение Расшифровка
07 068 Ввести значения в ячейку 68
08 404 Обнулить аккумулятора с помощью сдвига на 4 вправо
09 669
10 070 Ввести значения в ячейку 70
11 170 Загрузить ячейку 70 в аккумулятор
12 700 Вычесть ячейку 0 (то есть значение 1) из аккумулятора
13 670 Записать аккумулятор в ячейку 70
14 319 Если в аккумуляторе отрицательное значение, то перейти на адрес 19
15 169 Загрузить ячейку 69 в аккумулятор
16 268 Прибавить ячейку 68 к аккумулятору
17 669 Записать аккумулятор в ячейку 69
18 811 Перейти по адресу 11
19 569 Вывести ячейку 69
20 900 Остановиться
Я прогнал эту программу для входных данных 5 и 3. При этом необходимо было выполнить 34 инструкции, на которые мне понадобилось немногим менее 15 минут. Следовательно частота следования инструкций для этого компьютера (в комплекте со мной) составила около 38 мГц (не путать с МГц). Содержимое памяти и выходной ленты

Другие программы

Создатели CARDIAC подошли к вопросу серьёзно и разработали (не считая приведенных выше) следующие программы:
  • Программу для «переворачивания» разрядов числа
  • Bootstrap для загрузки программ со входной ленты
  • Механизм вызова подпрограмм
  • Программу для игры в Ним с одной кучкой (то есть, в игру Баше)

Ссылки

Видео с демонстрацией оригинала:

Метки:

habrahabr.ru

Бумажный компьютер

Передача сигнала

Сигналы в машине передаются по поршневому принципу. Когда блок смещен на одну единицу длины, то передается положительное значение, иначе — ноль.
NOT
AND
OR XOR RS-триггер Дешифратор Линия задержки Линия задержки управляется оператором машины при помощи соответствующего рычага. Когда нужно продолжить сигнал «загорается» красная лампочка, иначе — зелёная. Линию задержки можно использовать для продолжения сигнала на большие расстояния, в случае, если мощности бумаги не хватает. Генератор импульсов Демонстрациионая машина с основными логическими вентилями Очень хочется услышать мнение и советы экспертов касательно этого проекта и шансов создания полноценной бумажной вычислительной машины. С удовольствием отвечу на любые ваши вопросы.

Спасибо за внимание!

Метки:

  • бумага
  • картон
  • бумажная модель
  • логические вентили
  • компьютер

geektimes.ru

Делаем персональный компьютер для ребенка своими руками

Ну какой ребенок не мечтает о собственном ноутбуке, как у мамы и папы? Всем детям хочется иметь доступ к личному компьютеру, но мы, родители, не любим подпускать их к нему, так как это не очень полезно. Настоящие компьютеры детям ни к чему, они только портят зрение. А вот почему бы не сделать малышам их личные маленькие ноутбуки? Сделайте их вместе, и дети будут счастливы! Для них такая поделка будет очень интересной.

Чтобы сделать такой ноутбук, который будет даже складываться и раскладываться, как и настоящий, вам понадобится:

  • большой кусок толстого картона
  • ножницы
  • черная краска с эффектом грифельной доски (по такой краске можно рисовать мелками, но если такую краску вы найти не смогли, можно использовать и гуашь)
  • кисточка
  • мелки
  • линейка
  • карандаш

Для начала отмерьте кусок картона, из которого будет сделано основание ноутбука. Вырежьте эту часть. Затем пометьте по центру, чтобы можно было согнуть ноутбук. Немного надрежьте канцелярским ножом, чтобы удобнее складывалось. Можно поступить и иначе: полностью разрезать этот кусок картона на две части, а потом объединить клейкой лентой таким образом, чтобы эти части также свободно сгибались.

Теперь вырежьте из картона еще три небольшие части: для клавиатуры, экрана и мышки. Еще мельче части понадобятся на отдельные клавиши. Покрываем эти части черной красной, даем высохнуть. Позже все это приклеиваем к основной части ноутбука.

Теперь начинаем украшать ноутбук. Например, можно сделать именную табличку, с именем ребенка.

Компьютер готов. Теперь ваш ребенок сможет везде носить его с собой, а еще каждый день писать что-то новое мелками (при условии, если вы использовали краску с эффектом грифельной доски).

По материалам сайта: http://www.handmadecharlotte.com/

ihappymama.ru

Как сделать из бумаги компьютер

AssistanceTV 136,698 views.Как сделать винторез своими руками из бумаги. Как сделать револьвер пистолет с использованием бумаги | 6 бумажные пули — Duration: 15:16. Распечатки: Компьютер (iMac) из бумаги — YouLoveIt.ru.Как сделать игрушечный ноутбук из бумаги видео — Весь Муром.

В летней компьютерной школе мы иногда предлагаем детям собрать «биокомьютер», то есть вычислительное устройство из того, что валяется в прямом смысле под ногами. Так как дети не очень хорошо знают, как устроены вычислительные устройства, то обычно получается что-то вроде картинки под спойлером. Но некоторые всё же делают счёты или абак.

Биокомпьютер

А недавно я натолкнулся на описание модели компьютера, сделанной из бумаги, разработанную в 1968 в лабораториях Белла. Компьютер называется CARDIAC (CARDboard Illustrative Aid to Computation), что приблизительно переводится как Картонное Наглядное Пособие по Вычислениям. То есть на самом деле это не совсем компьютер, так как проводником сигналов, а также арифметико-логическим устройством в нем выступает человек. Тем не менее, он позволяет понять некоторые принципы, лежащие в основе современной вычислительной техники. К тому же, после недолгих поисков, я нашёл описание и материалы для изготовления CARDIAC.

CARDIAC состоит из двух блоков — памяти и процессора. В процессорный блок вставлены несколько бумажных полосок с помощью которых нужно выбирать выполняющуюся инструкцию. Кроме этого, в блок памяти вставляется лента, куда происходит вывод, а в процессор — лента со входными данными.

Память

Компьютер имеет 100 ячеек памяти с адресами от 00 до 99. Каждая из них может быть использована для хранения одной инструкции или одного трехзначного числа. Любая из ячеек может быть перезаписана, так что при желании можно даже написать самомодифицирующуюся программу. Значения в ячейках заносятся с помощью карандаша, а модифицируются с помощью карандаша и ластика. При этом в ячейке 0 всегда «прошито» значение 001. Его очень удобно использовать для инкремента, так как команд с непосредственными значениями аргументов у компьютера нет.

Вот как выглядит оригинальный блок памяти:

Счетчик инструкций

В оригинале в качестве счетчика инструкций используются божья коровка, как на рисунке выше. Она вставляется в специальные отверстия, пробитые в каждой из ячеек памяти. Так как мне не хотелось делать 100 отверстий, то для обозначения счетчика команд я использовал другую божью коровку — просто выкладывал ее на нужную ячейку.

Аккумулятор

Единственный регистр в компьютере — это аккумулятор. Он используется для выполнения арифметических операций (сложение, вычитание, сдвиг), а также для условных переходов. В отличие от ячеек памяти, аккумулятор может хранить 4 десятичных разряда.

Система команд

Каждая инструкция кодируется с помощью трехзначного десятичного числа. Первая цифра — это всегда код операции. Остальные две цифры как правило представляют собой адрес ячейки, которой оперирует инструкция.

CARDIAC может «выполнять» 10 различных инструкций (с кодами от 0 до 9):

  • 0 — INP — ввод значения из входной ленты
  • 1 — CLA — загрузка содержимого ячейки памяти в аккумулятор
  • 2 — ADD — прибавление ячейки памяти к аккумулятору
  • 3 — TAC — переход по заданному адресу, если значение аккумулятора отрицательное
  • 4 — SFT — операция сдвига влево и вправо на заданное число десятичных разрядов
  • 5 — OUT — вывод ячейки памяти в выходную ленту
  • 6 — STO — запись аккумулятора в ячейку памяти
  • 7 — SUB — вычитание ячейки памяти из аккумулятора
  • 8 — JMP — безусловный переход по заданному адресу
  • 9 — HRS — остановка и сброс

Изготовление компьютера

Я распечатал прилагаемые материалы на плотной бумаге, вырезал все нужные отверстия, вставил движущиеся полоски вовнутрь и склеил оба блока.

Как это всё работает?

Функционирование компьютера заключается в последовательном выполнении инструкций. Перед началом выполнения, необходимо посмотреть где находится божья коровка (то есть счетчик инструкций) и перемещая полоски набрать значение из этой ячейки памяти в окошке «Instruction Register».

Дальше необходимо следовать по стрелкам, начиная с надписи «Start» и выполнять все предписания. Например, на приведенной картинке нужно сначала переместить счетчик инструкций вперед, а затем добавить содержимое ячейки 41 к аккумулятору.

Конечно же вычисления (сложение, вычитание и сдвиг) придется выполнять вручную. Для этого рядом с надписью «Accumulator» есть несколько окошек, позволяющих выполнять сложение/вычитание в столбик.

Для начала я «ввел» (то есть вписал карандашом в ячейки памяти с 17 по 23) первую из программ, приведенных в руководстве:

Эта программа складывает два числа, считываемые со входной ленты, и записывает результат на выходную ленту.
Инструкция ввода считывает значение из входной ленты, записывает его в заданную ячейку, а затем передвигает входную ленту на один шаг вперед, чтобы в окошке «Input» появилось следующее значение. При этом придется воспользоваться карандашом (и, возможно, ластиком), чтобы записать значение в ячейку памяти.

После выполнения этой программы со входными значениями 42 и 128 состояние памяти стало следующим:

«Быстродействие» компьютера

Какой же обзор компьютера без бенчмарков? Я взял из руководства следующую программу, предназначенную для перемножения двух чисел.
Адрес Значение Расшифровка
07 068 Ввести значения в ячейку 68
08 404 Обнулить аккумулятора с помощью сдвига на 4 вправо
09 669
10 070 Ввести значения в ячейку 70
11 170 Загрузить ячейку 70 в аккумулятор
12 700 Вычесть ячейку 0 (то есть значение 1) из аккумулятора
13 670 Записать аккумулятор в ячейку 70
14 319 Если в аккумуляторе отрицательное значение, то перейти на адрес 19
15 169 Загрузить ячейку 69 в аккумулятор
16 268 Прибавить ячейку 68 к аккумулятору
17 669 Записать аккумулятор в ячейку 69
18 811 Перейти по адресу 11
19 569 Вывести ячейку 69
20 900 Остановиться

Я прогнал эту программу для входных данных 5 и 3. При этом необходимо было выполнить 34 инструкции, на которые мне понадобилось немногим менее 15 минут. Следовательно частота следования инструкций для этого компьютера (в комплекте со мной) составила около 38 мГц (не путать с МГц).

Содержимое памяти и выходной ленты


Создатели CARDIAC подошли к вопросу серьёзно и разработали (не считая приведенных выше) следующие программы:
  • Программу для «переворачивания» разрядов числа
  • Bootstrap для загрузки программ со входной ленты
  • Механизм вызова подпрограмм
  • Программу для игры в Ним с одной кучкой (то есть, в игру Баше)
Видео с демонстрацией оригинала:

Всем привет! В 15 лет я стал одержим идеей создания бумажной вычислительной машины — полноценного механического компьютера, созданного из бумаги, картона и зубочисток. Меня поразило то, что бумага существует уже более 2000 лет, но до сих пор никто не утруждал себя созданием бумажного компьютера.


Все механизмы были разработаны мною, за исключением «AND» вентиля, идею которого я позаимствовал у одного из механических Lego-компьютеров.

Передача сигнала

Сигналы в машине передаются по поршневому принципу. Когда блок смещен на одну единицу длины, то передается положительное значение, иначе — ноль.


NOT


AND


OR


XOR


RS-триггер


Дешифратор


Линия задержки

Линия задержки управляется оператором машины при помощи соответствующего рычага. Когда нужно продолжить сигнал «загорается» красная лампочка, иначе — зелёная. Линию задержки можно использовать для продолжения сигнала на большие расстояния, в случае, если мощности бумаги не хватает.

Лорэна Кормителева

Представляю вашему вниманию мастер -класс от Кормителевой Лорэны Эдуардовны по созданию детского ноутбука .

Для этого вам понадобится :

1. Коробка от конфет (у меня мерси)

2. Губка для посуды 2-3 шт.

3. Наклейки с буквами

5. Ножницы

6. Клей-пистолет

7. Широкий двусторонний скотч

Давно хотела смастерить детям ноутбук , но не было подходящей коробочки, спустя пол-года она появилась и я сразу приступила к работе.

Наклейки купила в детском магазине .

Так как дети уже успели поиграть коробкой, ее пришлось подклеить широким двусторонним скотчем.


Потом я приступила к клавиатуре. Я примерила буквы (проверить все ли уместится) подготовила разрезанные на квадратики картон и губку, и начала вырезать. Букву клеем на картон, затем пистолетом приклеиваем к губке. Буквы, цифры, знаки, картинки.


Внешнюю сторону с помощью клея-пистолета и двусторонним скотчем обклеила тканью.


Экран я сделала из белого картона. Долго думала, что изобразить на рабочем столе.


Из оставшихся картинок разбила на подгруппы : домашние и дикие животные. Сначало наметила простым карандашом лес, хозяйство, затем наклеила картинки и раскрасила цветными карандашами и фломастерами .


Ноутбук готов к играм .


Публикации по теме:

Хоочу предложить вам мастер-класс по созданию аппликации «Веселая пчелка» для мама. Для создания нам будет нужно:Картон (красный,черный,.

«Геометрик» — это возможность исследовательской деятельности ребенка, содействие его познавательному и сенсомоторному развитию, а также.

Создаем игру «Морские камешки» Эта игра стала открытием для детей старшего дошкольного возраста. Каждый день дети просят эту игру и даже.

Хочу представить Вашему вниманию небольшой мастер-класс по созданию короба, к сказке «Маша и медведь». Для создания плетеного короба нам.

Макет «Животные Арктики» Представляю вашему вниманию макет «Животные Арктики».Для того, чтобы сделать макет нам понадобятся: Обувная.

Хочу представить мастер-класс изготовления осеннего дерева в стиле топиария. Топиарий-еще называют «Дерево счастья».Такое дерево должно.

Здравствуйте, дорогие коллеги! Не за горами праздник, посвященный Дню защитника отечества. Все мы думаем, какой подарок ребятам сделать.

Бумага и картон — это универсальные материалы для самых разных поделок. Совсем не обязательно в совершенстве владеть техникой оригами. Некоторые оригинальные и забавные вещи может сделать даже ребенок. Вы еще не знаете, как сделать из бумаги ноутбук?

Определяемся с размером и назначением поделки

Зачем делать модель бумажную модель компьютера? Вариантов может быть много — это простая игрушка для ребенка, принадлежность для его куклы, открытка для взрослого любителя высоких технологий или шуточный подарок. Меняется только размер, а основная пошаговая инструкция, как сделать из бумаги ноутбук, одинакова для всех поделок.

Нетрудно догадаться, что для куклы и для самого ребенка нужны компьютеры разных размеров. Если же вы делаете открытку в подарок, выбирайте произвольный периметр заготовки. Интересная идея — сделать модель ноутбука и подарить его в коробке от настоящего ПК. Только учтите, что делать такой презент стоит исключительно человеку с хорошим чувством юмора. Если имеются сомнения относительно реакции получателя, откажитесь от этой идеи.

Как сделать из бумаги ноутбук своими руками?

Вам понадобится два листа бумаги или картона равного размера. Соединяем основание и крышку при помощи скотча или ниток. Заготовка у нас есть. Теперь самое время заняться ее оформлением. Клавиатуру можно нарисовать или приклеить из отдельных бумажных «кнопок». Аналогичным образом делаем дисплей. Рисуем его на внутренней стороне крышки или приклеиваем. Ноутбук из бумаги может показывать страницу поисковой системы, рабочий стол или любимый сайт адресата подарка. Можно сделать экран сменным. Для этого приклейте узкие полоски — его обрамление. Верхний кусок бумаги или картона нужно закрепить только по краям, оставьте отверстие, через которое можно будет вставлять новые изображения.

Идеи по оформлению бумажного ноутбука

В качестве основы для этой поделки можно использовать пустую коробку от конфет с поднимающейся крышкой. Еще одна интересная идея — сделать объемный ноутбук из бумаги своими руками. Для этого для боковых бортиков понадобятся прямоугольники из того же материала, что и основа. Каждый прямоугольник согните дважды, приклейте к основе. В месте загиба крышки также нужно оставить свободную полосу бумаги для ровного закрытия изделия. Такая конструкция позволяет создать объемные кнопки. Используйте бумажные кубики, которые нетрудно сложить самостоятельно. Также можно взять запчасти от старой настоящей клавиатуры. Не забудьте украсить крышку с наружной стороны «лейблом» производителя.

Если взять листок бумаги, ручку принтер, ножницы и клей…

В летней компьютерной школе мы иногда предлагаем детям собрать «биокомьютер», то есть вычислительное устройство из того, что валяется в прямом смысле под ногами. Так как дети не очень хорошо знают, как устроены вычислительные устройства, то обычно получается что-то вроде картинки под спойлером. Но некоторые всё же делают счёты или абак.

Биокомпьютер

CARDIAC состоит из двух блоков — памяти и процессора. В процессорный блок вставлены несколько бумажных полосок с помощью которых нужно выбирать выполняющуюся инструкцию. Кроме этого, в блок памяти вставляется лента, куда происходит вывод, а в процессор — лента со входными данными.

Память

Компьютер имеет 100 ячеек памяти с адресами от 00 до 99. Каждая из них может быть использована для хранения одной инструкции или одного трехзначного числа. Любая из ячеек может быть перезаписана, так что при желании можно даже написать самомодифицирующуюся программу. Значения в ячейках заносятся с помощью карандаша, а модифицируются с помощью карандаша и ластика. При этом в ячейке 0 всегда «прошито» значение 001. Его очень удобно использовать для инкремента, так как команд с непосредственными значениями аргументов у компьютера нет.

Вот как выглядит оригинальный блок памяти:

Счетчик инструкций

В оригинале в качестве счетчика инструкций используются божья коровка, как на рисунке выше. Она вставляется в специальные отверстия, пробитые в каждой из ячеек памяти. Так как мне не хотелось делать 100 отверстий, то для обозначения счетчика команд я использовал другую божью коровку — просто выкладывал ее на нужную ячейку.

Аккумулятор

Единственный регистр в компьютере — это аккумулятор. Он используется для выполнения арифметических операций (сложение, вычитание, сдвиг), а также для условных переходов. В отличие от ячеек памяти, аккумулятор может хранить 4 десятичных разряда.

Система команд

Каждая инструкция кодируется с помощью трехзначного десятичного числа. Первая цифра — это всегда код операции. Остальные две цифры как правило представляют собой адрес ячейки, которой оперирует инструкция.

CARDIAC может «выполнять» 10 различных инструкций (с кодами от 0 до 9):

  • 9 — HRS — остановка и сброс

Изготовление компьютера

Я распечатал прилагаемые материалы на плотной бумаге, вырезал все нужные отверстия, вставил движущиеся полоски вовнутрь и склеил оба блока.

Как это всё работает?

Функционирование компьютера заключается в последовательном выполнении инструкций. Перед началом выполнения, необходимо посмотреть где находится божья коровка (то есть счетчик инструкций) и перемещая полоски набрать значение из этой ячейки памяти в окошке «Instruction Register».

Дальше необходимо следовать по стрелкам, начиная с надписи «Start» и выполнять все предписания. Например, на приведенной картинке нужно сначала переместить счетчик инструкций вперед, а затем добавить содержимое ячейки 41 к аккумулятору.

Конечно же вычисления (сложение, вычитание и сдвиг) придется выполнять вручную. Для этого рядом с надписью «Accumulator» есть несколько окошек, позволяющих выполнять сложение/вычитание в столбик.

Для начала я «ввел» (то есть вписал карандашом в ячейки памяти с 17 по 23) первую из программ, приведенных в руководстве:

Эта программа складывает два числа, считываемые со входной ленты, и записывает результат на выходную ленту.
Инструкция ввода считывает значение из входной ленты, записывает его в заданную ячейку, а затем передвигает входную ленту на один шаг вперед, чтобы в окошке «Input» появилось следующее значение. При этом придется воспользоваться карандашом (и, возможно, ластиком), чтобы записать значение в ячейку памяти.

После выполнения этой программы со входными значениями 42 и 128 состояние памяти стало следующим:

«Быстродействие» компьютера

Какой же обзор компьютера без бенчмарков? Я взял из руководства следующую программу, предназначенную для перемножения двух чисел.
Адрес Значение Расшифровка
07 068 Ввести значения в ячейку 68
08 404
09 669
10 070 Ввести значения в ячейку 70
11 170
12 700
13 670
14 319
15 169
16 268
17 669
18 811 Перейти по адресу 11
19 569 Вывести ячейку 69
20 900 Остановиться

Я прогнал эту программу для входных данных 5 и 3. При этом необходимо было выполнить 34 инструкции, на которые мне понадобилось немногим менее 15 минут. Следовательно частота следования инструкций для этого компьютера (в комплекте со мной) составила около 38 мГц (не путать с МГц).

Если взять листок бумаги, ручку принтер, ножницы и клей… В летней компьютерной школе мы иногда предлагаем детям собрать «биокомьютер», то есть вычислительное устройство из того, что валяется в прямом смысле под ногами. Так как дети не очень хорошо знают, как устроены вычислительные устройства, то обычно получается что-то вроде картинки под спойлером. Но некоторые всё же делают счёты или абак.Биокомпьютер

А недавно я натолкнулся на описание модели компьютера, сделанной из бумаги, разработанную в 1968 в лабораториях Белла. Компьютер называется CARDIAC (CARDboard Illustrative Aid to Computation), что приблизительно переводится как Картонное Наглядное Пособие по Вычислениям. То есть на самом деле это не совсем компьютер, так как проводником сигналов, а также арифметико-логическим устройством в нем выступает человек. Тем не менее, он позволяет понять некоторые принципы, лежащие в основе современной вычислительной техники. К тому же, после недолгих поисков, я нашёл описание и материалы для изготовления CARDIAC.

Как устроен компьютер

CARDIAC состоит из двух блоков — памяти и процессора. В процессорный блок вставлены несколько бумажных полосок с помощью которых нужно выбирать выполняющуюся инструкцию. Кроме этого, в блок памяти вставляется лента, куда происходит вывод, а в процессор — лента со входными данными.

Память

Компьютер имеет 100 ячеек памяти с адресами от 00 до 99. Каждая из них может быть использована для хранения одной инструкции или одного трехзначного числа. Любая из ячеек может быть перезаписана, так что при желании можно даже написать самомодифицирующуюся программу. Значения в ячейках заносятся с помощью карандаша, а модифицируются с помощью карандаша и ластика. При этом в ячейке 0 всегда «прошито» значение 001. Его очень удобно использовать для инкремента, так как команд с непосредственными значениями аргументов у компьютера нет. Вот как выглядит оригинальный блок памяти:

Счетчик инструкций

В оригинале в качестве счетчика инструкций используются божья коровка, как на рисунке выше. Она вставляется в специальные отверстия, пробитые в каждой из ячеек памяти. Так как мне не хотелось делать 100 отверстий, то для обозначения счетчика команд я использовал другую божью коровку — просто выкладывал ее на нужную ячейку.

Аккумулятор

Единственный регистр в компьютере — это аккумулятор. Он используется для выполнения арифметических операций (сложение, вычитание, сдвиг), а также для условных переходов. В отличие от ячеек памяти, аккумулятор может хранить 4 десятичных разряда.

Система команд

Каждая инструкция кодируется с помощью трехзначного десятичного числа. Первая цифра — это всегда код операции. Остальные две цифры как правило представляют собой адрес ячейки, которой оперирует инструкция. CARDIAC может «выполнять» 10 различных инструкций (с кодами от 0 до 9):
  • 0 — INP — ввод значения из входной ленты
  • 1 — CLA — загрузка содержимого ячейки памяти в аккумулятор
  • 2 — ADD — прибавление ячейки памяти к аккумулятору
  • 3 — TAC — переход по заданному адресу, если значение аккумулятора отрицательное
  • 4 — SFT — операция сдвига влево и вправо на заданное число десятичных разрядов
  • 5 — OUT — вывод ячейки памяти в выходную ленту
  • 6 — STO — запись аккумулятора в ячейку памяти
  • 7 — SUB — вычитание ячейки памяти из аккумулятора
  • 8 — JMP — безусловный переход по заданному адресу
  • 9 — HRS — остановка и сброс

Изготовление компьютера

Я распечатал прилагаемые материалы на плотной бумаге, вырезал все нужные отверстия, вставил движущиеся полоски вовнутрь и склеил оба блока.

Как это всё работает?

Функционирование компьютера заключается в последовательном выполнении инструкций. Перед началом выполнения, необходимо посмотреть где находится божья коровка (то есть счетчик инструкций) и перемещая полоски набрать значение из этой ячейки памяти в окошке «Instruction Register».

Дальше необходимо следовать по стрелкам, начиная с надписи «Start» и выполнять все предписания. Например, на приведенной картинке нужно сначала переместить счетчик инструкций вперед, а затем добавить содержимое ячейки 41 к аккумулятору. Конечно же вычисления (сложение, вычитание и сдвиг) придется выполнять вручную. Для этого рядом с надписью «Accumulator» есть несколько окошек, позволяющих выполнять сложение/вычитание в столбик.

Пример работы компьютера

Для начала я «ввел» (то есть вписал карандашом в ячейки памяти с 17 по 23) первую из программ, приведенных в руководстве: Эта программа складывает два числа, считываемые со входной ленты, и записывает результат на выходную ленту. Инструкция ввода считывает значение из входной ленты, записывает его в заданную ячейку, а затем передвигает входную ленту на один шаг вперед, чтобы в окошке «Input» появилось следующее значение. При этом придется воспользоваться карандашом (и, возможно, ластиком), чтобы записать значение в ячейку памяти. После выполнения этой программы со входными значениями 42 и 128 состояние памяти стало следующим:

«Быстродействие» компьютера

Какой же обзор компьютера без бенчмарков? Я взял из руководства следующую программу, предназначенную для перемножения двух чисел. Адрес Значение Расшифровка
07 068 Ввести значения в ячейку 68
08 404 Обнулить аккумулятора с помощью сдвига на 4 вправо
09 669
10 070 Ввести значения в ячейку 70
11 170 Загрузить ячейку 70 в аккумулятор
12 700 Вычесть ячейку 0 (то есть значение 1) из аккумулятора
13 670 Записать аккумулятор в ячейку 70
14 319 Если в аккумуляторе отрицательное значение, то перейти на адрес 19
15 169 Загрузить ячейку 69 в аккумулятор
16 268 Прибавить ячейку 68 к аккумулятору
17 669 Записать аккумулятор в ячейку 69
18 811 Перейти по адресу 11
19 569 Вывести ячейку 69
20 900 Остановиться
Я прогнал эту программу для входных данных 5 и 3. При этом необходимо было выполнить 34 инструкции, на которые мне понадобилось немногим менее 15 минут. Следовательно частота следования инструкций для этого компьютера (в комплекте со мной) составила около 38 мГц (не путать с МГц). Содержимое памяти и выходной ленты

Другие программы

Создатели CARDIAC подошли к вопросу серьёзно и разработали (не считая приведенных выше) следующие программы:
  • Программу для «переворачивания» разрядов числа
  • Bootstrap для загрузки программ со входной ленты
  • Механизм вызова подпрограмм
  • Программу для игры в Ним с одной кучкой (то есть, в игру Баше)

Ссылки

Видео с демонстрацией оригинала:

Бумажный компьютер

Передача сигнала

Сигналы в машине передаются по поршневому принципу. Когда блок смещен на одну единицу длины, то передается положительное значение, иначе — ноль.

NOT

AND

OR XOR RS-триггер Дешифратор Линия задержки Линия задержки управляется оператором машины при помощи соответствующего рычага. Когда нужно продолжить сигнал «загорается» красная лампочка, иначе — зелёная. Линию задержки можно использовать для продолжения сигнала на большие расстояния, в случае, если мощности бумаги не хватает. Генератор импульсов Демонстрациионая машина с основными логическими вентилями Очень хочется услышать мнение и советы экспертов касательно этого проекта и шансов создания полноценной бумажной вычислительной машины. С удовольствием отвечу на любые ваши вопросы.

Спасибо за внимание!

  • бумага
  • картон
  • бумажная модель
  • логические вентили
  • компьютер

Делаем персональный компьютер для ребенка своими руками

Ну какой ребенок не мечтает о собственном ноутбуке, как у мамы и папы? Всем детям хочется иметь доступ к личному компьютеру, но мы, родители, не любим подпускать их к нему, так как это не очень полезно. Настоящие компьютеры детям ни к чему, они только портят зрение. А вот почему бы не сделать малышам их личные маленькие ноутбуки? Сделайте их вместе, и дети будут счастливы! Для них такая поделка будет очень интересной.

Чтобы сделать такой ноутбук, который будет даже складываться и раскладываться, как и настоящий, вам понадобится:

  • большой кусок толстого картона
  • ножницы
  • черная краска с эффектом грифельной доски (по такой краске можно рисовать мелками, но если такую краску вы найти не смогли, можно использовать и гуашь)
  • кисточка
  • мелки
  • линейка
  • карандаш

Для начала отмерьте кусок картона, из которого будет сделано основание ноутбука. Вырежьте эту часть. Затем пометьте по центру, чтобы можно было согнуть ноутбук. Немного надрежьте канцелярским ножом, чтобы удобнее складывалось. Можно поступить и иначе: полностью разрезать этот кусок картона на две части, а потом объединить клейкой лентой таким образом, чтобы эти части также свободно сгибались.

Теперь вырежьте из картона еще три небольшие части: для клавиатуры, экрана и мышки. Еще мельче части понадобятся на отдельные клавиши. Покрываем эти части черной красной, даем высохнуть. Позже все это приклеиваем к основной части ноутбука.

Теперь начинаем украшать ноутбук. Например, можно сделать именную табличку, с именем ребенка.

Компьютер готов. Теперь ваш ребенок сможет везде носить его с собой, а еще каждый день писать что-то новое мелками (при условии, если вы использовали краску с эффектом грифельной доски).

По материалам сайта: http://www.handmadecharlotte.com/

Как сделать из бумаги компьютер

AssistanceTV 136,698 views.Как сделать винторез своими руками из бумаги. Как сделать револьвер пистолет с использованием бумаги | 6 бумажные пули — Duration: 15:16. Распечатки: Компьютер (iMac) из бумаги — YouLoveIt.ru.Как сделать игрушечный ноутбук из бумаги видео — Весь Муром.

CARDIAC — компьютер из бумаги своими руками / Хабр

Если взять листок бумаги,

ручку

принтер, ножницы и клей…




В летней компьютерной школе мы иногда предлагаем детям собрать «биокомьютер», то есть вычислительное устройство из того, что валяется в прямом смысле под ногами. Так как дети не очень хорошо знают, как устроены вычислительные устройства, то обычно получается что-то вроде картинки под спойлером. Но некоторые всё же делают счёты или абак.


Биокомпьютер

А недавно я натолкнулся на описание модели компьютера, сделанной из бумаги, разработанную в 1968 в лабораториях Белла. Компьютер называется CARDIAC (CARDboard Illustrative Aid to Computation), что приблизительно переводится как Картонное Наглядное Пособие по Вычислениям. То есть на самом деле это не совсем компьютер, так как проводником сигналов, а также арифметико-логическим устройством в нем выступает человек. Тем не менее, он позволяет понять некоторые принципы, лежащие в основе современной вычислительной техники. К тому же, после недолгих поисков, я нашёл описание и материалы для изготовления CARDIAC.

CARDIAC состоит из двух блоков — памяти и процессора. В процессорный блок вставлены несколько бумажных полосок с помощью которых нужно выбирать выполняющуюся инструкцию. Кроме этого, в блок памяти вставляется лента, куда происходит вывод, а в процессор — лента со входными данными.


Память

Компьютер имеет 100 ячеек памяти с адресами от 00 до 99. Каждая из них может быть использована для хранения одной инструкции или одного трехзначного числа. Любая из ячеек может быть перезаписана, так что при желании можно даже написать самомодифицирующуюся программу. Значения в ячейках заносятся с помощью карандаша, а модифицируются с помощью карандаша и ластика. При этом в ячейке 0 всегда «прошито» значение 001. Его очень удобно использовать для инкремента, так как команд с непосредственными значениями аргументов у компьютера нет.

Вот как выглядит оригинальный блок памяти:

Счетчик инструкций

В оригинале в качестве счетчика инструкций используются божья коровка, как на рисунке выше. Она вставляется в специальные отверстия, пробитые в каждой из ячеек памяти. Так как мне не хотелось делать 100 отверстий, то для обозначения счетчика команд я использовал другую божью коровку — просто выкладывал ее на нужную ячейку.

Аккумулятор

Единственный регистр в компьютере — это аккумулятор. Он используется для выполнения арифметических операций (сложение, вычитание, сдвиг), а также для условных переходов. В отличие от ячеек памяти, аккумулятор может хранить 4 десятичных разряда.

Система команд

Каждая инструкция кодируется с помощью трехзначного десятичного числа. Первая цифра — это всегда код операции. Остальные две цифры как правило представляют собой адрес ячейки, которой оперирует инструкция.

CARDIAC может «выполнять» 10 различных инструкций (с кодами от 0 до 9):

  • 0 — INP — ввод значения из входной ленты
  • 1 — CLA — загрузка содержимого ячейки памяти в аккумулятор
  • 2 — ADD — прибавление ячейки памяти к аккумулятору
  • 3 — TAC — переход по заданному адресу, если значение аккумулятора отрицательное
  • 4 — SFT — операция сдвига влево и вправо на заданное число десятичных разрядов
  • 5 — OUT — вывод ячейки памяти в выходную ленту
  • 6 — STO — запись аккумулятора в ячейку памяти
  • 7 — SUB — вычитание ячейки памяти из аккумулятора
  • 8 — JMP — безусловный переход по заданному адресу
  • 9 — HRS — остановка и сброс

Изготовление компьютера

Я распечатал прилагаемые материалы на плотной бумаге, вырезал все нужные отверстия, вставил движущиеся полоски вовнутрь и склеил оба блока.

Как это всё работает?

Функционирование компьютера заключается в последовательном выполнении инструкций. Перед началом выполнения, необходимо посмотреть где находится божья коровка (то есть счетчик инструкций) и перемещая полоски набрать значение из этой ячейки памяти в окошке «Instruction Register».

Дальше необходимо следовать по стрелкам, начиная с надписи «Start» и выполнять все предписания. Например, на приведенной картинке нужно сначала переместить счетчик инструкций вперед, а затем добавить содержимое ячейки 41 к аккумулятору.

Конечно же вычисления (сложение, вычитание и сдвиг) придется выполнять вручную. Для этого рядом с надписью «Accumulator» есть несколько окошек, позволяющих выполнять сложение/вычитание в столбик.

Для начала я «ввел» (то есть вписал карандашом в ячейки памяти с 17 по 23) первую из программ, приведенных в руководстве:


Адрес Значение Расшифровка
17 034 Ввести значение в ячейку 34
18 035 Ввести значение в ячейку 35
19 134 Скопировать ячейку 34 в аккумулятор
20 235 Прибавить ячейку 35 к аккумулятору
21 636 Записать аккумулятор в ячейку 36
22 536 Вывести ячейку 36
23 900 Остановка и сброс

Эта программа складывает два числа, считываемые со входной ленты, и записывает результат на выходную ленту.
Инструкция ввода считывает значение из входной ленты, записывает его в заданную ячейку, а затем передвигает входную ленту на один шаг вперед, чтобы в окошке «Input» появилось следующее значение. При этом придется воспользоваться карандашом (и, возможно, ластиком), чтобы записать значение в ячейку памяти.

После выполнения этой программы со входными значениями 42 и 128 состояние памяти стало следующим:

«Быстродействие» компьютера

Какой же обзор компьютера без бенчмарков? Я взял из руководства следующую программу, предназначенную для перемножения двух чисел.


Адрес Значение Расшифровка
07 068 Ввести значения в ячейку 68
08 404 Обнулить аккумулятора с помощью сдвига на 4 вправо
09 669 Записать аккумулятор в ячейку 69
10 070 Ввести значения в ячейку 70
11 170 Загрузить ячейку 70 в аккумулятор
12 700 Вычесть ячейку 0 (то есть значение 1) из аккумулятора
13 670 Записать аккумулятор в ячейку 70
14 319 Если в аккумуляторе отрицательное значение, то перейти на адрес 19
15 169 Загрузить ячейку 69 в аккумулятор
16 268 Прибавить ячейку 68 к аккумулятору
17 669 Записать аккумулятор в ячейку 69
18 811 Перейти по адресу 11
19 569 Вывести ячейку 69
20 900 Остановиться

Я прогнал эту программу для входных данных 5 и 3. При этом необходимо было выполнить 34 инструкции, на которые мне понадобилось немногим менее 15 минут. Следовательно частота следования инструкций для этого компьютера (в комплекте со мной) составила около 38 мГц (не путать с МГц).

Содержимое памяти и выходной ленты

Создатели CARDIAC подошли к вопросу серьёзно и разработали (не считая приведенных выше) следующие программы:


  • Программу для «переворачивания» разрядов числа
  • Bootstrap для загрузки программ со входной ленты
  • Механизм вызова подпрограмм
  • Программу для игры в Ним с одной кучкой (то есть, в игру Баше)

Видео с демонстрацией оригинала:


Историческое развитие Co

Содержимое

Введение
История вычислимости насчитывает тысячи лет, включая два полунезависимых рассказа. С одной стороны, развитие вычислительной устройств восходит примерно к 1000–500 гг. до н. э.  С другой стороны, математические и логическая история развития теории вычислений восходит лишь к примерно вдвое меньше примерно до 400 г. до н.э.CE. В этой статье обсуждается история вычислительных устройств. А отдельная статья посвящена развитию общей теории вычислений. Читатели с избирательным интересы могут использовать ссылки в окне содержания. В статье есть несколько нестандартная структура. Несколько обтекаемый основной сюжет проходит ниже. Однако каждая из ссылок в основной статье ведет на расширение основного повествования за счет включения важных деталей. рекомендую учащиеся читают упрощенное повествование один раз, затем читают повествование еще раз включая связанный контент.

Элементы вычислений Устройства
Все вычислительные устройства имеют одни и те же четыре основные характеристики: Все они имеют (1) физическая структура , среда, которая служит элементом система, которая может представлять объекты, свойства, события, отношения и т. д. для которые машина решает проблемы. Например, счеты, изображенные ниже, имеют серия стержней и бус. Эти стержни и бусины составляют физическое структура, служащая репрезентативным средством для счетов.Стержни и бусины могут служить репрезентативной структурой на счетах, поскольку стержни и шарики представляют собой отдельные компоненты, имеющие различные отношения к одному еще один. Что не менее важно, эти элементы способны изменять свои отношения на систематической основе. (2) Все вычислительные устройства имеют функция интерпретации , отображение, которое присваивает элементы структуры в устройстве к элементам предметной области, которые оказываются значимыми для проблемы, которые решает устройство.Функция интерпретации отображает структуру в элементы предметной области систематически, чтобы сохранить структурные связи между значимыми элементами как устройства, так и проблема домен. В случае со счетами функция интерпретации сопоставляет стержни и бусины с числами и десятичными знаками. (3) Все вычислительные устройства имеют набор структурно-специфических преобразований операции , которые преобразуют структуру устройства таким образом, чтобы отражает структурные изменения в области, соответствующие решению задачи. проблема.В случае со счетами правила перемещения бусинок по стержням и по стержням представляют собой набор правил преобразования, которые сохраняют отображение бусин и стержней к числам и десятичным разрядам таким образом, который отражает числовые функции, такие как добавление. Для получения дополнительной информации перейдите по ссылке ниже. (4) Наконец, все вычислительные устройства включают в себя управляющую структуру . Контроль структуры определяют порядок операций преобразования для любого заданного вычисление. В нашем случае со счетами человек-оператор должен обеспечить контроль структура.Таким образом, чтобы пользоваться счетами, нужно научиться передвигать бусинки. стержни для выполнения расчета. Как мы увидим, важной частью истории развития вычислительных устройств включает в себя постепенный автоматизация вычислений за счет включения структуры управления в само устройство.

Изображение счетов. Счеты представляет собой самое раннее известное вычислительное устройство в том смысле, что оно включает в себя четыре центральных компоненты вычислительных устройств. (1) Конструкция, служащая репрезентативный носитель. Я счеты стержни и бусы служить как структура. (2) Функция интерпретации, отображающая структуру к элементам предметной области в систематическом моды, чтобы сохранить структурные отношения между значимые элементы домена. (3) Набор специфичные для структуры операции преобразования, которые преобразуют структура устройства, отражающая структурные изменения в области, соответствующей решению.В случае со счетами операции — это правила перемещения бусинок по стержням и поперек стержней так, чтобы для отражения числовых функций. (4) Структура управления, которая выбирает среди операций преобразования и определяет их порядок выполнения во время вычислений.

 

Раннее начало: Вычислительные устройства с ручным управлением  
Первое известное устройство для численный расчет это счеты. Его изобретение в Малой Азии датируется примерно 1000–500 годами до нашей эры.CE.. Пользователи счетов производят вычисления, перемещая систему скользящих шариков, расположенных столбцами на стойке. Торговцы того времени использовали счеты для отслеживания торговли. транзакций до тех пор, пока использование бумаги и карандаша не подорвало их значение. особенно в Европе. На счетах можно складывать, вычитать, умножать, и разделить. На самом деле математики продемонстрировали, что все Тьюринг вычислимые функции

Инкан Кипу Модерн Период горизонта примерно 600-1000 лет назад.Д.Э.
счеты вычисляемые. Однако, счеты требуют, чтобы пользователь непосредственно манипулировал устройством для каждого шага данного вычисления. По этой причине он имеет мало общего с современными компьютерами, выполняющими многие или большинство операций без прямого манипулирования пользователем (т.е. автоматически).

Во время то, что ученые называют современным периодом Горизонта, примерно 600–1000 гг. Инки использовали устройство, называемое Кипу или кипу.Это устройство состоит из ряда хлопковых шнуров. Есть основной шнур, с которого свисает множество «подвесных» шнуров. В то время как Quipus казался устройством для передачи общих данных (например, цвета шнуры использовались для обозначения различных материалов и состояний), один хорошо задокументированное использование заключалось в представлении количеств и вычислении чисел. Узлы в подвесных шнурах и их взаимное расположение на шнуре позволяли Инки представляли числа в десятичной системе (1, 10, 100 и т. д.).).


XV и XVI века
В 1967 году американские исследователи обнаружили 2 неизвестные (или утерянные) тетради с Леонардо Ди Винчи (1452-1519) в Национальной библиотеке Испании в Мадриде. Написанные между 1503 и 1505 годами, эти работы, получившие название «Мадридский кодекс», были исследованы вскоре после их открытия доктором Роберто Гуателли. Гуателли имел международную репутацию эксперта по Леонардо Ди Винчи с специальность создания рабочих копий изобретений Ди Винчи.Гуателли вспомнил рисунок в «Атлантическом кодексе» (1480-1518), похожий на к калькулятору Codex Madrid. Используя обе рукописи, доктор Гуателли построил спорная (и ныне утерянная) копия машины да Винчи 1968 года. В реплике Гвателли машина да Винчи работает по принципу, сходному с более поздней машиной Паскаля (1642 г.). Большинство историков не верят, что да Винчи намеревался спроектировать калькулятор. Сам да Винчи, вероятно, не мог построили машину как сопротивление трению, создаваемое машиной было бы чрезмерным для материалов того времени.

 

XVI и XVII века
Использование таких полуавтоматических или автоматических машин, как предусмотрено Ди Винчи для решения математических задач, разработанных в основном во время начало 17 века. Ранние машины были спроектированы и даже построены математиками. Эти машины представляли собой своего рода калькуляторы, способные выполнять базовые арифметические операции. такие операции, как сложение, вычитание, умножение и деление. Среди Первыми создателями таких устройств были Джон Непер, Вильгельм Шикхард, Блез Паскаль и Готфрид Лейбниц.

Шотландский математик Джон Непер (1550-1617) изобрел несколько устройства для умножения. Самое известное из его устройств, «кости», состояло из из комплекта шатунов и стойки. Маркировка Napier сбоку стойки от 2 до 9, чтобы пользователь объединил стержни и стойку, чтобы создать умножение от 2 до 9. Таблица для любого числа. Один выбирает стержни, соответствующие цифрам по номеру и помещает их вместе в стойку. Чтобы умножить число на 4, например, один идет по ряду, отмеченному 4, начиная справа влево, добавляя числа в каждом параллелограмме, чтобы получить следующую цифру.

Первый горка появилось правило, в зависимости от того, с кем вы консультируетесь, в какой-то момент между 1622-1625 гг. Современная логарифмическая линейка обычно считается в первую очередь результат проницательности четырех мужчин; Джон Нейпир, английский астроном Эдмунд Гюнтер, английский математик преподобный Уильям Отред, французский артиллерийский офицер и профессор геометрии. Амеди Мангейм. Логарифмическая линейка основана на открытии Нейпиром логарифмов. Гюнтера вкладом было начертить линию длиной 2 фута, на которой он разместил целые числа, разделенные интервалами, пропорциональными их значения журнала.До Гюнтера, чтобы найти логарифм числа, вы либо подсчитали сами или посмотрели в одной из стандартных таблиц. Первый отнимал много времени, а второй страдал от множества ошибок. введены при расчете и воспроизведении таблиц. С использованием линии Гюнтера, можно найти свои значения, просто измерив расстояния между числа. Отред пошел еще дальше, противопоставив два Линии Гюнтера и показывая, как можно выполнять вычисления, перемещая два линии относительно друг друга.Manheim представил десятидюймовый дизайн подвижный двусторонний курсор во время учебы в Париже. Поскольку логарифмическая линейка работает, манипулируя расстояниями для выполнения вычислений, это, вероятно, первый аналоговый компьютер, получивший широкое распространение. На самом деле он использовался в техники, естественных наук и математики еще в 1972 году. Поскольку логарифмическая линейка является аналоговое устройство, его точность (и полезность) зависели от точности ограничения технологии, используемой при его изготовлении. Ранний слайд правила имели точность всего в три цифры.Это оказалось достаточно точным для большинства работ, но не подходило для ситуаций, когда требовалась большая точность.

Как и в случае с Ди Винчи, случайное открытие в 1935 и 1956 годах некоторых немецкий астроном и математик Вильгельма Шикарда (1592-1635) письма своему другу Иоганну Кеплеру показали, что Шикард разработал механический калькулятор в 1623 году. Изобретение Шикарда было описано Кеплер как механическое средство для вычисления эфемерид. Только два прототипа (сейчас утеряны) были когда-либо созданы. построенных в то время, один из которых использовался Кеплером.Машина Шикарда была реконструирована (1960 г.) на основе на его схемах.

Блез Паскаль (1623-1662), 18-летний подросток в 1642 году изобрел то, что стало известно как «Паскалина». (его звали «цифровой колесный калькулятор»), чтобы облегчить работу отца. работал французским сборщиком налогов в Париже. Числовой Колесный калькулятор, или Паскалина, состоял из прямоугольного ящика с восемью подвижными зубчатые колеса или циферблаты, использующие основание десять для выполнения сложение сумм до восьми цифр.В частности, как циферблат для одна колонна совершила один оборот (сдвинулась на десять делений), она сдвинулась следующее колесо, представляющее столбец десятков, одно место. Полная революция циферблата десятков увеличил циферблат сотен на одну ступень, и так далее целых восемь колес. Чтобы добавить с Pascaline, зубчатые колеса были перемещены в первое число, за которым следуют все остальные добавляемые числа. У Pascaline, хотя и продуманной конструкции, было два недостатки: (1) пользователю приходилось настраивать колеса вручную, и (2) его простые вычислительные способности распространялись только на сложение.То Паскалин можно было использовать для вычитания и умножения (последовательным сложением), хотя каждая операция требовала от пользователя гораздо большего.

Готфрид Вильгельм фон Лейбниц (1646-1716), немецкий математик и философ, изучал оригинал Паскаля. заметки и рисунки для создания машины, которая улучшила Pascaline. Машина Лейбница могла добавить, вычитать, умножать и делить. Лейбниц модифицировал машину, включив в нее ступенчатую барабанную передачу, названную Колесо Лейбница. Колесо Лейбница представляло собой подвижный соединительный штифт каретки. колеса, как у Паскаля, через ступенчатые цилиндры, содержащие гребневидные зубья разной длины, соответствующие цифрам от 1 до 9. Поворот кривошипа, соединяющего цилиндры, включал меньшие шестерни над цилиндрами, а они, в свою очередь, включали секцию добавления. Добавляющая секция состояла из цилиндра, на котором были установлены зубья шестерни различной длины. функционировал как комбинированный ряд простых плоских шестерен. Лейбниц назвал свое окончательное творение, заказанное в 1674 г. — Ступенчатый счетчик. Однако Reckoner требовал некоторого пользовательского манипулировали переносом и часто давали неверные ответы. Дизайн ошибка в несущем механизме привела к тому, что машина не могла нести десятки правильно, когда множитель был двух- или трехзначным числом.Оба Чарльза, третьего графа Стэнхоупа, (английский 1775 г.) и Матиус Хан (германский язык; начал 1770 г., закончил 1776 г.) сделать свой собственный успешный калькулятор умножения, подобный калькулятору Лейбница.

Калькуляторы 16 го и 17 го века предоставили (в ограниченной степени) доказательство концепции того, что механические методы, воплощенные в машины могли выполнять длительные и сложные численные вычисления. Эти машины представляют основные идеи, используемые в конструировании механических вычислителей до середины 20 -го век.Тем не менее изобретение и использование устройств, способных длительно вычисления по-прежнему требовали разработки нескольких ключевых элементов. Первый, машины 17 -го и 18 -го вв. в лучшем случае полуавтоматически. На каждом новом этапе расчета пользователь приходится вручную вмешиваться. Во-вторых, каждая машина — это машина специального назначения. спроектированы и сконструированы для выполнения одной задачи или очень небольшого количества задач. В-третьих, каждый отдельный расчет требовал от пользователя настройки машина.Не было понятия программы, т. е. набора инструкций. написанный в терминах набора основных операций, которые позволили бы машине выполнять широкий спектр задач, используя различные последовательности его основные операции. В-четвертых, за исключением представления ввода/вывода, ни один элемент этих машин не может служить памятью ни для программы, или для промежуточных или частичных результатов. В некоторых случаях пользователи записывали частичные результаты, а затем повторно ввели их, когда они были необходимы для завершения расчет.Наконец, поскольку эти машины приводились в действие механическими средствами, они были ограничены по сложности и скорости. История вычислительных машин от Лейбница до ENIAC и ACE во многом является одним из идеологических и технологических достижения, кульминацией которых стало создание универсального программируемого компьютеры.

18 й и 19 й Века
Разработка более сложных вычислительных машин в 19 столетие было отмечено больше неудач, чем успехов.Отчасти неудачи были из-за большой сложности задачи. Отчасти они были связаны с финансированием проблемы, вызванные неспособностью представить полное воздействие таких машин на разнообразной деятельности человека. В конце 18 го века, в 1786 г. Дж. Х. Мюллер, гессенский армейский офицер, задумал, что Позже Бэббидж называет Разностную машину. В частности, Мюллер предполагал механический калькулятор для определения многочлен значений с помощью метода разностей Ньютона.Метод работает с использованием константа, полученная путем вычитания значений полинома, которые затем могут быть используется для однозначного указания других значений полинома для фиксированного интервал. Такая машина, хотя и выглядит столь же специализированной, как Pascaline, возможно используется для расчета значений для любого функция, которую можно аппроксимировать на подходящих интервалах полиномом. Усилия Мюллера по сбору средств оказались безрезультатными, и о проекте забыли.

Следующее значительное развитие вычислительной техники произошло только после 1820-е годы.Чарльз Ксавьер Тома де Кольмар (1785-1870), французский промышленник, построил и серийно производил первый калькулятор. Как и Мюллер, де Кольмар начал разрабатывать свою идею в армии. Де Кольмара Работает «арифмометр». тот же подход со ступенчатым цилиндром, что и в калькуляторе Лейбница. Кроме того к умножению, арифмометр может также выполнять деление с пользователем помощь.

В 1811 году молодой Чарльз Бэббидж, сын банкира и одаренного математика, поступил в Кембридж.Согласно отчету Бэббиджа в его автобиографии, Отрывки из жизни философа , его внимание было первым обратился к вычислительной технике в 1812 году, когда

… Я сидел в кабинетах Аналитического общества, в Кембридже, склонив голову на стол в каком-то мечтательном настроении, со столом логарифмов, лежащих передо мной. Другой участник, войдя в комнату, и увидев меня в полусне, крикнул: Ну, Бэббидж, о чем ты мечтаешь? о?», на что я ответил: «Я думаю, что все эти таблицы (показывая к логарифмам) могут быть вычислены с помощью машин.

 

Некоторые сомневаются в правдивости приведенного выше рассказа Бэббиджа. Бэббидж определенно не действовал в соответствии со своими идеями до 1819 года в связи с проверкой таблиц для Королевского астрономического общества. астрономический данные, значения логарифмов и тригонометрических функций, а также различные физические константы, закодированные в таблицах, активно и широко использовались в научных целях. эксперименты и морская навигация. Стандартные правительственные таблицы для навигации, например, было известно более 1000 ошибок.Исправления для навигационных таблиц охватили семь томов. Бэббидж знал, что источниками ошибок были люди, создавшие столы. Таблицы составлялись вручную, и в некоторых случаях насчитывает более двух столетий. В таком исчерпывающем сборнике, составленном за такой долгий промежуток времени человеческие ошибки в расчетах усугублялись ошибки переписчика заразили таблицы, как вирус. Поскольку расчеты поскольку таблицы были в значительной степени утомительны и механически, понял Бэббидж. что машина, которая могла бы создавать таблицы, избавила бы от вычислений и ошибки транскрипции, а также неспособность страдать от утомление задачи.

Первый важный шаг Бэббиджа и единственный, который он полностью осуществил, была концепция и строительство прототипа для его Разница Двигатель. Разностная машина, если бы Бэббидж завершил ее, оценивали многочлены методом разностей. Бэббидж приступил к работе на прототипе машины в 1819 году и успешно продемонстрировал машину (без возможности распечатать свои ответы) для Королевского астрономического общества в 1822 году. Функция, вычисленная Бэббиджем для королевского общества, была равна 41 + . n + n 2 .На его демонстрации Бэббидж предложил создать версию машины, которая могла бы вычислять необходимые значения и распечатать эти научные столы. Впечатленное, Общество наградило его золотой медалью и поддержало инициативу Бэббиджа. предложение построить полномасштабную разностную машину с точностью 20 десятичные знаки. В 1823 году с первоначальным (и историческим) грантом в 1500 английских фунтов, Бэббидж принялся за работу. В дополнение к обеспечению Бэббиджа грант на создание полномасштабной разностной машины, прототипа Бэббиджа также свел его с Ада, графиня Лавлейс.Ада была единственная законная дочь поэта лорда Байрона (хотя она никогда не жила с ним). Ада Байрон-подросток столкнулась с прототипом и Бэббиджем. когда на светском мероприятии, предназначенном для демонстрации новых изобретений. Мисс Байрон, наставником которого был друг семьи, великий логик Август Де Морган, показал значительный интеллект, математические и логические способности. Она сразу поняла работу машины и ее потенциал. На самом деле, Бэббидж однажды заметил, что она понимает это лучше, чем он сам. и объяснил его функционирование намного лучше, чем он мог бы.Она и Бэббидж поддерживала постоянный контакт до конца жизни.

К 1840 году Бэббидж уже давно (около 7 лет) отказался от работы над Разницей Двигатель с завершенной половиной из 25 000 деталей и только с одним фрагментом. собран. Он страдал от бесконечной борьбы за финансирование, обвинений в мошенничество и споры со своими академическими коллегами, потратив при этом 34 000 фунтов собственных денег и денег британского правительства. В 1840 году Бэббидж начал путешествовать по континенту, читая лекции о своем новом изобретении (которое британское правительство отказалось финансировать), Аналитическая машина.Дизайн Бэббиджа for the Analytical Engine представляет собой первый проект компьютера в современный смысл. У него была память, процессор и программа.

При разработке аналитической машины Бэббидж использовал Жозеф-Мари Жаккар Технология 1801 при кодировании данных на перфокартах. Жаккард б/у дырокол для картона карты для кодирования шаблонов, которые затем могли бы управлять поведением ткацких станков. То У Analytical Engine было два хранилища картонной памяти. Один магазин провел «операционные карты», определяющие то, что Бэббидж назвал формулой (программой).В другом магазине хранились «переменные карты», которые определяли переменные. на которых формула будет работать, а также любые промежуточные значения. Два магазина подавались на мельницу, которая затем выполняла вычисления.

Графиня Лавлейс сыграла чрезвычайно важную роль в развитии аналитической машины. Она перевела французскую публикацию заметок к лекциям Бэббиджа об аналитической машине на английский язык, добавив добавление о том, что был длиннее статьи, но настолько проницателен, что Бэббидж настаивал на его публикации. в целом. Ее перевод с добавлением появляется в 1843 г. под инициалы AAL в сентябрьском выпуске «Научных мемуаров» Тейлора 1843 г. . Хотя Бэббидж, возможно, написал алгоритмы для разностной машины еще раньше. отмечает, алгоритм в статье Лавлейс 1943 года делает ее первым человеком, который опубликовать алгоритм, предназначенный для выполнения такой машиной. Как результат, ее часто считают одним из первых программистов. Графиня также разработали методы программирования подпрограммы, петли, а также прыжки.Кроме того, она тщательно задокументировала конструкцию и логику работы двигателя, предоставляя единственные четкие записи, доступные в настоящее время. Она была, так же, первым, кто осознал потенциал двигателей для приложений, выходящих за рамки числовых расчет.

За несколько лет до своей смерти Бэббидж начал изготавливать мельницу из Аналитическая машина. После смерти Бэббиджа Британская ассоциация «Развитие науки» представило отчет (1878 г.), рекомендовавший против построение аналитической машины.В 1888 году его сын закончил мельница для двигателя в достаточной степени, что он использовал его для расчета на 44-е место. К 1906 году мельница была полностью завершена.

Хотя Бэббиджу не удалось создать работающую разностную машину, в 1834 г. Георг Шутц, шведский печатник, публицист, писатель, переводчик Шекспира и инженер, прочитал о разностной машине Бэббиджа в статье в Эдинбургское обозрение , написанное Дионисуисом Ларднером. Работа с его сын Эдварда, Георг Шойц начал строить уменьшенную версию разностный двигатель.Эдвард еще учился в старшей школе, и они вдвоем первый двигатель на своей кухне из дерева с помощью ручных инструментов и самодельного токарного станка. Используя несколько иные принципы, Шойц сконструировал работающий разностный движок, способный хранить 15-значные числа и вычислять числа четвертого порядка различия. Отец и сын продемонстрировали свою разностную машину Бэббиджу в 1854 году, который получил им тепло. На выставке в Париже в 1855 году их машина завоевала Золотая медаль. В конце концов, они продали его обсерватории Дадли в Олбани. Нью-Йорк.Обсерватория рассчитала орбиту Марса с помощью Шойца машина. Несмотря на успехи в изготовлении рабочих двигателей, отец и Усилия команды сына потерпели финансовый крах.

Пока Бэббидж и Шойцы работали над внедрением цифровых вычислений инструментов, Джеймс Томсон разработал аналоговый компьютер в виде механический интегратор для прогнозирования приливов с использованием гармонический анализ. Томсон завершил свою работу между 1861 и 1864 годами. родной брат Уильям, Лорд Кельвин объединил несколько интеграторов Томсона. разработать фактические приливный анализатор/предиктор.Кельвин опубликовал статьи в 1876 году, обрисовав в общих чертах использование интеграторов для создания устройства для решение дифференциальных уравнений. Машины построили и представили Thomson братья были аналоговыми устройствами, которые работали, создавая механические отношения которые были изоморфный (имела ту же структуру, что и) решаемое уравнение. Решение вычисляется путем запуска машины и записи того, что произошло с количеством представляет интерес.

Поздний 19 й и 20 й Век
Между 1888 г. и созданием ИАС в 1952 г. ученые и математики разработал основные компоненты и нововведения в дизайне, которые считаются само собой разумеющимися в современных компьютерах.Основными новшествами этого периода были увеличение скорости, развитие внутренней памяти чтения/записи, принятие более эффективных и общих представлений и обработки элементы и варианты дизайна, которые предпочитали простоту скорости. Большинство, если не все эти инновации стали возможными благодаря развитию следующего важного компонента в цифровых вычислительных инструментах, бинарный коммутационный блок или транзистор. Разработка компонентов бинарной коммутации и их интеграция в вычислительную технику сделала современные цифровые компьютеры возможно.Переход на электрические инструменты вместо механических в конечном итоге окажется ключом к разработке вычислительной техники с огромным улучшенная скорость, расширенные функции памяти, более простое использование рекурсивных функций, и общая программируемость. Разработка электронных компонентов позволит значительно увеличить скорость обработки. Идея программы, хранящейся внутри в доступной для чтения и записи памяти, разрешено для программ гораздо большей сложности, а также для самоструктурирующихся программ. Концепция и технологическая реализация больших электронных память допускала большие программы, которые могли работать с большими объемами сохраненных данных, а также хранение промежуточных результатов, все на высоком уровне скорость. Использование двоичных, а также элементов булевой логики в качестве основы для машинных операций устранены многие конструктивные проблемы с которыми столкнулся Бэббидж и другие. Наконец, идея центрального сериала процессор пожертвовал скоростью в пользу простоты, что было необходимо компромисс, учитывая, что сложность была ограничивающим фактором электронной техники того времени (так же, как это было в машиностроении).

Также следует отметить разработку аналоговых вычислительных устройств. Ученые на этот раз редко использовал цифровой вычислительные методы. Аналоговые устройства широко использовались, особенно в технике. расчеты, где без логарифмической линейки не обойтись. Первым по-настоящему значительным событием эпохи стало строительство в 1930 году крупномасштабного дифференциального анализатора Ванневар Буш в Массачусетском технологическом институте и финансируется фондом Рокфеллера. По материалам работ 1920-х гг. (независимо от прозрений Кельвина) машина, которая была самой большой вычислительное устройство в мире, когда оно было построено, могло выполнять интеграцию и дифференциация.

Следующее нововведение в хронологическом порядке было Ранний прототип Канрада Цузе, первоначально назывался «V1». Переименованный в «Z1» после Второй мировой войны, Z1 был первым в серии. из четырех механических двоичных программируемых калькуляторов, разработанных Zuse реализация той же концепции абстрактного дизайна. Цузе, инженер, задумал Идея механического расчета своих исследований в середине 1930-х гг. Цузе хотел в качестве генерала вычислений машину, насколько это возможно, и которая может вычислить серию уравнений. Цузе предусмотрел конструкцию, очень похожую по подходу на аналитическую машину Бэббиджа. несмотря на то, что не имел контакта с идеями Бэббиджа до 1939 года.машина Цузе имел бы память для записи данных, основное арифметическое устройство и блок координации операций и данных (управление), программный блок для ввода программы и данные, а также принтер для записи результатов. В отличие от Бэббиджа машина Z1 использовала двоичное представление данных и булеву алгебру. описывать и реализовывать операции машины. Переключение на бинарная и булева алгебра представляют собой значительный прогресс, поскольку позволяют избежать многие дизайнерские и инженерные проблемы, с которыми столкнулся Бэббидж.Z1 используется память скользящих металлических деталей для хранения до шестнадцати чисел. Вычисления оставался в основном механическим. Программа вводилась перфолентой из вторичного сырья. Кинопленка 35 мм. Значения данных вводились с клавиатуры, а вывод выставлялись на электрических лампах.

В 1939 году Цузе закончил Z2 (ранее V2). Электромеханические реле заменены механические вычислительные машины по предложению Гельмута Шрайера друг и инженер-электрик. Памятная конструкция осталась раздвижной металлической части.Z2 работал, и работал очень быстро для того времени. Цузе бы продолжить после его призыва на разработку Z3 и Z4 для немецкой аэродинамики Исследовательский институт. Неполный Z4 пережил войну в подвале. Цузе реконструировал Z4 где-то в конце 1940-х годов в Цюрихе, где он царствовать как самая мощная вычислительная машина на материковой Европе в течение нескольких годы.

От калькуляторов к компьютерам: Последний шаг
Пока Цузе трудился над Z2, через Атлантику Джон Атанасов и Клиффорд Берри (аспирант Атанасова) завершил прототип 16-битного сумматор с использованием электронных ламп в Государственном колледже Айовы (ныне Государственный университет Айовы) 1939 год.Атанасов и Берри разработали более сложный компьютер, Компьютер Атанасова-Берри (или ABC). Проблемы о патентах и ​​потребности в большем финансировании побудили их написать вычислительных машин для решения больших систем линейной алгебры. Уравнения , в которых очень подробно описана их работа. Университет штата Айова все еще защищает утверждение, отклоненное Верховным судом в 1973 году, о том, что ABC обозначил изобретение первой электронной вычислительной машины общего назначения. азбука была никогда не строился, хотя анализ 1960-х показал, что он сработает. Атанасов и Берри отказались от проекта, когда оба начали работать на Военные усилия США.

Самый известный электромеханический программируемый калькулятор был построенный Говард Эйкен и его группа в Гарварде, 1943 год. «ASCC Mark I» («Автоматический калькулятор с управлением последовательностью, Mark I») или «Гарвард Марк I», он имел длину 51 фут, весил 5 тонн, работал электромеханических реле и насчитывал три четверти миллиона деталей. Его скорость была сравнима с Z3, и он читал программы с ленты.В дополнение к Айкену, милость Хоппер много лет работал над проектом как для ВМФ, так и для Гарвард.

Чтобы понять британские разработки в это время, нужно вернуться назад по 1938 год.  В то время британская разведывательная служба приобрела рабочее описание немецкого кодирующего устройства, машина ЭНИГМА. Позже Густав Бертран доставил из Франции рабочую копию ЭНИГМЫ. В 1940 году Алан Тьюринг отправился во Францию, чтобы встретиться с польскими криптоаналитиками. Тьюринг вернулся со знанием своих бомб, машины, используемые для помощи в взломе кодов.ENIGMA работала, имея огромное количество схем шифрования, из которых выбрал пользователь. Шифрование, преобразование письма в зашифрованное символ, меняющийся определенным образом для каждой введенной буквы. Набрано сообщений на правильно настроенной ENIGMA появится в зашифрованном виде, чтобы передаваться получателям, чье знание настроек позволило им расшифровать сообщение. Немецкое верховное командование использовало ENIGMA для передавать все свои важные сообщения войскам в полевых условиях.Когда англичане перехватили немца сообщение, они могли расшифровать его при условии, что знали используемое ключевое слово чтобы закодировать его. Знание внутренней работы ENIGMA значительно уменьшено количество ключей-кандидатов, соответствующих конкретному перехваченному сообщение, но обычно огромное количество возможных ключей все еще должно было быть быть исключена. Частота смены кода (три раза в день) и труд, связанный с тестированием возможных ключей, означал, что ручное декодирование сообщение заняло бы слишком много времени, чтобы позволить англичанам извлечь выгоду из содержащейся в нем информации, чувствительной ко времени.Что требовалось был средством быстрого изучения и устранения возможных ключей. Рано во время Второй мировой войны британцы начали проект ULTRA в Блетчли-парке (между Оксфордским и Кембридж). Исследователи из Блетчли-Парка изначально разработали несколько небольших машины, которые, как и их польские аналоги, они назвали «Бомбами» для поиска возможного шифрования схемы. Сконструированные с использованием электронных реле, Бомбы оказались весьма полезными в расшифровке более обычных сообщений. Однако немцы использовали совсем другой код и машину, построенную Лоренцем. Корпорация и называется Лоренц при шифровании высокого уровня стратегические команды. КОЛОСС, электрическая релейная машина, была построена в 1943 году как полностью автоматическое устройство для расшифровки этих высокоуровневых сообщений. COLOSSUS включал от 1800 до 2400 электронных ламп. КОЛОСС получен ввод от 5 считывателей бумажной ленты со скоростью примерно 5000 символов Второй.

Декан Школы электротехники Мура в Университет Пенсильвании, Джон Брейнерд руководил строительством последнего из программируемые вычислительные устройства военного времени, которые впоследствии были названы ENIAC: электронный числовой интегратор и Калькулятор.ENIAC часто называют первым электронным программируемым компьютер. В 1935 году баллистические исследования армии США Лаборатория начала использовать дифференциальный анализатор Буша для расчета траектории. столы. Однако из-за ограничений баллистических исследований машина, армия заключила контракт со школой Мура в 1942 году на исключительное использование их, гораздо лучший, анализатор. Брейнерд возглавил проект, в который вошли инженер Доктор Дж. Преспер Эккерт и физик Доктор Джон В. Мочли. Эккерт начал свой сотрудничество с Мокли в 1941 году, когда Эккерт учился в школе Мура, а Мокли стал там работать.Мочли познакомился с Джоном Работа Атанасова над электрическим компьютером во время посещения штата Айова до его прибытие в школу Мура. Посоветовавшись с Эккертом, Мокли обрисовал его идея электрического компьютера в меморандуме 1942 года. В это время ученые из Ballistic Research и школы Мура обнаружили, что с трудом справляется с примерно шестью запросами таблицы траекторий в день. В течение следующих примерно шести месяцев Мочли и группа школы Мур убедили руководитель научного руководителя вычислительной подготовки и деятельности, д.Герман Х. Голдстайн, что электронные устройства могут достичь гораздо более высокой вычислительной скорости. Правительство США согласилось предоставить 61 700 долларов для Мочли и Эккерта. планировал построить электронный калькулятор ENIAC в мае 1943 года. Проект получил название «Проект PX». Бюрократические формальности означало, что, по иронии судьбы, Мокли никогда официально не занимал должность исследователя в Проекте ПХ. Будучи инструктором в Муре, Мочли мог действовать только в качестве консультант проекта. Он был завершен в мае 1944 года. и продемонстрирован в 1945 году с перерасходом средств примерно в 450 000 долларов.Его главные конструкторы и исполнителями были Джон Мочли и Дж. Преспер Эккерт. Команда Брейнерда закончила ENIAC слишком поздно, чтобы выполнить его. первоначальная миссия по созданию артиллерийских таблиц для Второй мировой войны, хотя она использовать в проекте водородной бомбы. ЭНИАК отличается от других вычислительных устройств двумя способами. Во-первых, он был чрезвычайно большим (100 х 10 х 3 фута). При весе 30 тонн он имел более 100 000 компонентов, примерно 18 000 из них электронные лампы. Во-вторых, это было намного быстрее, чем предыдущий машины, умножая в под.003 секунды. Хотя ENIAC обладал многими качествами современных компьютеров, одна из причин не называть ENIAC первым электронным компьютером общего назначения дело в том, что у него не было внутренней памяти для хранения программ. Настройка машина для расчета требовала ручной настройки всех субблоков с помощью блоков переключателей, расположенных в различных частях машины, должны были быть установлены связи между различными субъединицами, главный программатор единица должна быть установлена, а константы должны быть введены с помощью переключателей. Это отнимало много времени, а также ограничивало скорость устройства. Несмотря на ограничений, работа в школе Мура повлияла на все основные послевоенных вычислительных проектов на годы вперед. Один из источников этого влияние оказала летняя школа по компьютерам, организованная в Университете Пенсильвания, 1946 год. Летнюю школу посетили почти все из крупнейших фигур в вычислительной технике.

Другое крупное транспортное средство, на котором Школа повлияла на будущие вычислительные машины, была также источником полемика.В 1944 году известный принстонский математик Джон фон Нейман присоединился к команде Moore School в качестве консультанта. Фон Нейман входил в диссертационный комитет Алана Тьюринга в Принстоне и разработал большой интерес к вычислительным машинам во время работы над атомной электростанцией в Лос-Аламосе. бомбовый проект. Команда Moore School уже разрабатывала дизайн для Преемник ENIAC. Фон Нейман собрал их идеи в отчете. В 1945 г. фон Нейман начал распространять отчет. Ранние версии в отчете не указаны Мокли и Эккерт в качестве авторов.Фон Нейман объяснил это опечатка, и более поздние версии действительно включали два. Однако к тому время отчет, который важно вновь представил идею внутренне хранимого программы, был так тесно связан с фон Нейманом, что он обычно приписывают идеи, которые он содержал даже сегодня.

К марту 1946 года Мочли и Эккерт покинул Мура, чтобы основать Electronic Control Company. По крайней мере часть причиной их отъезда были споры о том, сохранят ли они патент на ENIAC.ECC построен БИНАК для Northrop, которая использовала магнитную ленту для памяти. Затем компания стала Eckert-Mauchly Computer Corporation, построившая 46 УНИВАК, который мог обрабатывать как алфавитную, так и числовую информацию.

Макс Ньюман имел контакт с Блетчли-парком, Тьюрингом и школой Мура. Вместе с Фредди Уильямс и исследовательская группа Манчестерского университета (Манчестер, Англия), Ньюман завершил «Марк I» или «Манчестер Mark I» в июне 1948 года. Это первая машина с настоящей возможностью хранения программ. разработан компанией Williams. Память использует несколько ненадежный механизм кодирования данных через остаточный заряд, остающийся на поверхности электронно-лучевой трубки (ЭЛТ) в качестве результат воздействия на него электронного луча. Несмотря на ограниченную надежность, память была быстро, дешево и мало. Данные сохраняются в памяти путем запуска электрона луч на экране. Данные считываются из памяти с помощью другого луча и измерение результирующего напряжения электродом за экраном. В конце концов, Манчестерская машина также использовала примитивную форму языка ассемблера. разработан Тьюрингом, чтобы заменить использование двоичного кода для ввода и вывода. Через год (май 1949 г.) Морис Уилкс и его команда в Математическом Лаборатория в Кембриджском университете завершена EDSAC (Электронный Автоматический компьютер с задержкой хранения). EDSAC был первым функциональным и практичный электронный цифровой компьютер для использования хранимой программы. Подобно манчестерской системе, память, «ультразвуковая линия задержки», сегодня кажется чем-то экзотическим. Он состоял из набора ртутных ванн, в которых данные представлялись за счет непрерывного преобразования электрических сигналов в акустические импульсы которые отправляются через ванну, а затем повторно преобразуются на другой стороне.Уилкс посещал летнюю школу 1946 года по компьютерам в университете. из Пенсильвании, вернувшись с целью построить компьютер вдоль линии наброска фон Неймана.

фон Неймана Компьютеры EDVAC и IAS не были завершены до 1952 года. IAS, построенный в Принстонском институте перспективных исследований, был прототипом фон Неймана. реализация проекта, изложенного в отчете EDVAC. К большому В какой-то степени IAS послужила образцом для большинства компьютеров, созданных с тех пор. В В то же время IBM представила свой первый серийный компьютер IBM. 701.701 имел 1 КБ ОЗУ и мог записывать на ленточный накопитель. Конечно, годы после 1952 года ознаменовались огромными инновациями. которые выходят за рамки данной статьи.


Общие ссылки на историю вычислений

 

 

Японские счеты — UTSA Institute Of Texan Cultures

До изобретения компьютера или калькулятора торговцы использовали счетные доски или счеты для учета инвентаря и своих финансов.Счеты заменили другие примитивные счетные устройства, такие как пальцы, морские раковины и небольшие камни или палочки. Начиная с 2700 года до н. э. шумеры задокументировали использование счетов, состоящих из маленьких стержней и бусин, с использованием 90 236 клинописных 90 237 цифр и одной из первых известных систем счисления. Это помогло им разработать всевозможные расчеты. В 19 веке на греческом острове Саламин была найдена греческая версия абака, датируемая 300 годом до н. э. Он был сделан из мраморной плиты, на которой для счета использовались более мелкие кусочки дерева или мрамора.Это была конструкция абака, использовавшаяся в Западной Европе до Французской революции.

Только в 13 веке впервые стало известно об использовании китайских счетов, или Suanpan . Примерно в это же время японцы также адаптировали свою собственную версию счетов под названием соробан , которая имеет тот же стиль, что и в коллекции Институт техасских культур . В отличие от китайской версии, японская версия имеет две бусины на каждом стержне вверху, известные как «небесные бусины», и 5 бусин на нижнем конце стержня, известных как «земные бусины».Верхняя и нижняя бусины разделены счетной чертой. Каждая бусина на верхних стержнях представляет значение 5. В то время как бусинки на нижнем конце стержней представляют значение 1. Каждая бусина представляет собой значение десятого разряда, при расчете больших числовых значений требуется более 9 стержней.

В Китае и Японии разработано несколько стилей счетов, включая ¼, ⅕ и ⅖. В других странах есть свои собственные счеты. Русская версия, называемая щоты , произносится (SHAW-tee), была изобретена в 17 ом веке, и в каждом ряду есть десять бусин, представляющих наши десять пальцев.Новые версии счетов все еще разрабатывались вплоть до 20 -го -го века. В 1958 году Ли Кай-чен опубликовал руководство по новому стилю счета, который он недавно изобрел. Он состоит из двух абаков. Верх — это ¼ стиль соробан , а низ — ⅖ Suanpan . Он разработал эту гибридную версию, чтобы облегчить вычисления квадратных и кубических корней.

Научиться пользоваться счетами — непростая задача, и для ее освоения требуется некоторое время. В Интернете доступно множество обучающих видеороликов и статей, в которых шаг за шагом показано, как пользоваться счетами.Легче, если у вас есть один перед вами, чтобы полностью понять его использование. Есть школы в США и по всему миру, которые используют счеты в своих учебных программах при обучении арифметике. Дети могут выучить простые вычисления и в то же время занять руки, помогая им научиться концентрироваться. Даже со всеми нашими современными гаджетами и легким доступом к калькуляторам изучение ручных вычислений может быть полезным в случае отключения электроэнергии или чрезвычайных ситуаций.

Нажмите на видео выше, чтобы посмотреть пример использования счетов.

— Марисоль Мартинес. Под редакцией Кэтрин С. МакКлауд.

Счеты: NPR Издание: NPR

В этой серии мы много размышляли о некоторых культовых предметах, которые некоторые из нас использовали — хотя бы в течение короткого периода времени — в раннем школьном возрасте. Логарифмические линейки, регистратор, транспортиры и горелки Бунзена.

Но когда подошли счеты, мы немного растерялись.

«Кто-нибудь еще использует эту штуку?» мы задавались вопросом. — И как, черт возьми, это работает?

В наши дни вы, скорее всего, найдете простые счеты в руках дошкольников — с рядами бусинок радужного цвета, которые дети могут передвигать, трясти и стучать.

Но счеты — это гораздо больше, чем забавная игрушка для трехлетних детей. Это довольно сложное вычислительное устройство, которое восходит к древности.

Древние римляне использовали их для сбора налогов. В Средние века европейские купцы использовали их для учета своих финансов. Русские придумали свою версию, китайцы и японцы.

И хотя в наши дни очень немногие американцы знают, как с ними работать, в 19 веке счеты фактически были основой школьных занятий по всей стране.

Древний инструмент

«Счеты были очень популярны в США около 100 лет», — говорит Пегги Кидвелл, куратор Смитсоновского национального музея американской истории в Вашингтоне, округ Колумбия, когда она ведет меня по музею. задние комнаты.

В 1820-х годах, вдохновленный учителями в Европе, которые делали то же самое, человек по имени Джозайя Холбрук выступал за использование простых счетов в американских школах.

Устройство было особенно полезно для обучения молодых фабричных рабочих, которые не умели ни читать, ни писать, как выполнять простые вычисления, говорит Кидвелл.Холбрук также считал, что счеты — хороший способ дополнить формальное образование в начальных школах Бостона.

И он был прав. Счеты можно использовать для базового счета, а младшие школьники могут передвигать бусинки, чтобы составлять фигуры. Но вы также можете использовать их для выполнения ряда вычислений, от простого сложения и вычитания до умножения и даже извлечения квадратного корня.

Все они работают немного по-разному, но в большинстве случаев каждая строка представляет порядок 10 — нижняя строка может представлять единицы, вторая строка — десятки, затем сотни и так далее.Китайские и японские счеты разделены на две части; бусины с одной стороны стоят по одной, а бусины с другой стороны — по пять каждая.

«Почти невозможно обобщить, как они работают, — говорит Кидвелл. «Вы думаете, что знаете, а потом сталкиваетесь с такими вещами, — она указывает на гигантские счеты, сделанные в Мексике, — а у этого 13 бусинок в поперечнике!»

(На самом деле, мы даже не будем пытаться объяснить в нескольких абзацах, как они работают. Подробнее об этом вы можете найти в видео здесь и здесь.)

Тот факт, что они настолько легко адаптируются, делает их таким хорошим инструментом для обучения.

Modern Appeal

Маниша Сингх 3-х, 4-х, 5-ти и 6-ти лет в Shining Stars Montessori в Вашингтоне, округ Колумбия, используют версию с четырьмя рядами по 10 бусин в каждом.

«Самые маленькие просто наслаждаются цветами бусинок», — говорит она. Затем они используют его для простых упражнений по счету, прежде чем перейти к сложению и вычитанию.

«Это дает детям наглядное представление о том, как выполнять эти операции», — говорит Сингх.

Когда Сингх какое-то время преподавала в Индии, ее ученики изучали более сложные китайские и японские счеты. Там, как и во всей Азии, уроки счетов — популярное занятие после школы, и учителя часто используют их, чтобы помочь детям, у которых проблемы с математикой.

«Чтобы овладеть навыками, требуется около трех лет», — говорит Дэвид Барнер, профессор психологии Калифорнийского университета в Сан-Диего, изучающий, как дети учатся с помощью счетов. Но как только дети изучают основы, говорит он, «это может существенно изменить их способность выполнять вычисления.

Продвинутые пользователи счетов могут выполнять быстрые вычисления, используя даже воображаемые или мысленные счеты. «Вы увидите, как они дразнят руками в воздухе, как будто держат настоящие счеты», — говорит Барнер. Китайцы, японцы и индийцы Дети, которые соревнуются в умственных счетах, могут складывать до 15 чисел менее чем за две секунды. «Это действительно невероятное зрелище», — говорит Барнер. и тактильные способности, говорит Барнер.

«Конечно, это не для всех, — говорит Эми Такигути, преподающая счеты в программе продленного дня в Сан-Диего.

Такигути выросла в Японии в 70-х, и она говорит, что тогда счеты были обычным явлением. Большинство младших школьников научились пользоваться им в школе, а кассиры банка использовали его вместо калькулятора или компьютера.

Теперь она продолжает традицию, обучая около 65 учеников в возрасте от 4 до 12 лет в китайской общинной церкви.Такигути говорит, что этому навыку нелегко научить или научиться. Но как только это находит отклик у студентов, она обнаруживает, что большинству из них это действительно нравится.

«У меня была ученица с СДВ, и поначалу ей было очень тяжело, — говорит Такигучи. Но она продолжала приходить в класс — более пяти лет. «В конце концов она смогла по-настоящему сосредоточиться на вычислениях, — говорит Такигути. «Это действительно помогло ей стать увереннее».

Радужная математика с самодельными счетами

Я готовлюсь к следующему месяцу с радужными мероприятиями для Св.День святого Патрика и весна! Начнем с того, что эти самодельные счеты идеально подходят для радужной математики и мелкой моторики. Мне нравится, что я смог собрать его вместе с различными материалами, которые у нас уже были под рукой.

Связанный: Маты для сортировки цветов для математических и сенсорных игр

как сделать счеты для радужной математики

Материалы
Ершики для труб (по 1 на каждый цвет радуги)
Эластичная нить для творчества
Разноцветные макароны или бусины (всех цветов радуги)
Большие палочки для творчества

Направления
В зависимости от возраста и интересов дети определенно могут помочь сделать счеты! Я знаю, что мой сын был достаточно заинтригован, чтобы захотеть помочь с этим процессом.

Покрасьте палочки, если хотите. С помощью клеевого пистолета сделайте из палочек квадратную рамку для счетов. Я использовал уже собранную и окрашенную рамку из палочек, которая осталась у меня в летнем лагере. Покрашена белилами (разбавленной водой белой акриловой краской).

Отсоедините по две детали от каждого ершика. Мои были около дюйма или около того каждый — достаточно, чтобы обернуть палку для рукоделия.

Отрежьте шесть отрезков эластичной струны. Убедитесь, что каждая длина немного длиннее ширины рамы палки.

Возьмите один из красных предметов для чистки труб. Привяжите один конец одной из нитей к ершику для труб. Обязательно завяжите нить двойным или тройным узлом. Оберните этот кусок ершика для труб с левой стороны рамы палки, ближе к верху. Добавьте на нить десять красных бисерин. Мы использовали остатки окрашенной пасты из нашей сенсорной корзины Bear Sees Colors . Протяните нить к другому концу рамки, стараясь не сместить бусины/макаронные изделия. Привяжите этот конец веревки ко второму красному ершику.Затем оберните этот конец вокруг правой стороны рамы палки. Повторите для каждого цвета радуги.

Я использовал детали для чистки труб, потому что они облегчали использование прозрачной эластичной струны на раме. Когда я попытался привязать веревку прямо к раме, мне пришлось завязывать ее столько раз, чтобы она осталась. Я не хотел использовать ершики для трубок вместо веревки, так как макароны слишком сильно смешались бы с ершиками для трубок.

Думаю, на написание маршрута у меня ушло больше времени, чем на сборку счетов!

Связанный: Арт-проект «Радужный коллаж» для детей

Использование счетов для радужной математики

Для начала просто дайте детям изучить счеты и поиграть с ними самостоятельно.Всегда интересно наблюдать за тем, что дети делают сами, а слушать их наблюдения очень интересно!

Теперь, когда счеты готовы к работе, пришло время поиграть в радужную математику! Я действительно думаю, что эти счеты можно использовать для самых разных вещей. Вот несколько математических идей, которые можно использовать с маленькими детьми —

.
  • Пусть дети посчитают каждую бусину, передвигая ее слева направо. Это работает при счете до 10, прогрессии слева направо и мелкой моторике.
  • В парах это можно превратить в игру в кости. Малыши бросают кубик, передвигают свои бусины слева направо, и выигрывает тот, кто первым переместит все свои бусинки вправо. Это работает на подсчете, субситиризации, прогрессии слева направо и мелкой моторике.
  • Достаньте несколько карточек с числами. Дети работают над перемещением правильного количества бусинок слева направо.

Как бы вы использовали эти самодельные счеты?

Еще

радужных занятий, которые стоит попробовать

СЛЕВА НАПРАВО:

Радуга в мешочке — искусство без беспорядка // Мощное материнство

Радужные буквы Гонка к вершине // Оставайся дома, воспитатель

Цвет и форма совпадают // Лягушки, улитки и хвосты щенков

Сложите каменную радугу // Приключения Адама

Нарезание радужной пасты // Играй и учись каждый день

Радужный поднос мастера // Все еще играя в школу

Как перевернуть радугу | Простая наука для детей // Лимонно-лаймовые приключения

Радужное солнышко // Фея Поппинс

Упражнения для управления радужным карандашом // Sugar Aunts

Начало звуковых радуг // Пластилин для Платона

Названия радужных мелков своими руками // Страницы Pre-K

Подсчет пропусков радужной головоломки // Творческое включение

Игра на подбор цветов радужного медведя // Life Over Cs

Процесс рисования радужным мрамором // Вдохновение для дошкольников

Ткацкий станок для изготовления бумажных тарелок своими руками: искусство радужной пряжи // Sugar Spice and Glitter

Rainbow Sight Words // Связь с детским садом

Радужная математика с самодельными счетами // Fun-a-Day

Семейная настольная игра Rainbow Fact // Место раннего обучения Лиз

Простая радужная сенсорная бутылочка для детей // Кофейные чашки и мелки

Цвет радужной краски // Современное дошкольное учреждение

Сверните радугу // Лаборатория STEM

(не показано) Брелок для ключей Rainbow Perler с бусинами // Научи меня, мамочка

Ресурсы для дошкольников «Сделано для вас»

Планирование содержательных уроков для учащихся неделю за неделей, совмещая при этом другие обязанности преподавателя и личную жизнь, может оказаться непростой задачей.Вот где учитель дошкольного образования 101 поможет вам сэкономить время!

Учитель дошкольного образования 101 рад поделиться с вами потрясающими планами уроков, наборами заданий и многим другим! Мы предлагаем широкий выбор тем, которые часто используются в дошкольных классах, а также некоторые менее распространенные (но очень интересные) темы. Нажмите на изображение ниже, чтобы узнать больше о наших планах уроков радуги!

Планы уроков радуги

Присоединяйтесь к пакету от учителя дошкольного образования 101 сегодня, чтобы получить эксклюзивный доступ к нашим замечательным продуктам.И у нас даже есть три различных варианта членства в соответствии с вашими потребностями!

Радужные счеты «Сделай сам» — дома с Эшли

На этих выходных я быстро уехал и вернулся домой таким вдохновленным! Пока я ходил по магазинам, я наткнулся на симпатичные радужные счеты за 75 долларов! На самом деле я скоро буду помогать другу с детской комнатой, поэтому я подумал, что было бы интересно попробовать сделать свою собственную! Вот мой мастер-класс по изготовлению радужных счетов своими руками. И обещаю, это будет дешевле, чем $75 😉

Прежде всего, я покажу вам вдохновляющее изображение радужных счетов, которое я нашел в магазине.Это так мило!

Давайте начнем с видеоурока, чтобы вы получили представление о том, что я сделал. Затем я углублюсь в подробности ниже:

Если видео здесь не работает, вы можете посмотреть его на YouTube здесь. Я был бы счастлив, если бы вы подписались на мой канал на YouTube! Видео сначала публикуются на YouTube (обычно за ночь до публикации в блоге). Спасибо!

ПРИНАДЛЕЖНОСТИ

Включите JavaScript для просмотра контента

шаг 1

Начните с вырезания золотых обручей с помощью дремеля (убедитесь, что на нем есть металлическая режущая головка).Я отметил середину пути, а затем медленно распилил их пополам. При этом образуется много искр, поэтому не забудьте надеть защитные очки и перчатки!

Также отрежьте 2×4 до 16 дюймов в длину. Это будет база. Обязательно хорошо отшлифуйте! Это будет игрушка для малышей, поэтому вы хотите, чтобы она была настолько гладкой, насколько это возможно!

шаг 2

Теперь пришло время покрасить бусины! Для этого я нанизала бусины на имевшуюся под рукой пряжу и подвесила. Это позволило мне хорошо раскрасить бусины и не получить краску на счетах.Я нанесла два слоя краски на все бусины. Ванная тоже была отличным местом для рисования!

шаг 3

А теперь пришло время просверлить отверстия для полукруглых обручей. Я просверлил 3/4″ и тщательно отметил, где каждое отверстие должно быть первым. Это была медленная точная работа, но получилось так красиво!

шаг 4

Наконец, если ваших маленьких бусинок слишком мало, чтобы обойти обруч, просверлите изнанку сверлом 3/16″.

В последнюю очередь наденьте бусины на обручи и приклейте их к деревянной основе.Я использовал для этого клей гориллы, и он крепко держится!

ПОСЛЕ

Та-да! Вот какие получились счеты! Скажу честно, когда собирал, то был разочарован собой, что не сделал розово-желтой внешнюю арку — надо было покрасить иначе, чтобы радуга была розовая, желтая, зеленая и синяя. Ну что ж! Я все еще обожаю это!

Дон поиграл с ним минутку и получил удовольствие! Надеюсь, ребенку нашего друга он тоже понравится! Мне нравится, что это может быть симпатичный декор комнаты, который также может служить игрушкой или учебным центром для детей!

Этот пост содержит несколько партнерских ссылок для вашего удобства.Нажмите здесь, чтобы прочитать мою полную политику раскрытия информации.

 

Если вам это нравится, закрепите его!

Родственные

ОСНОВЫ СЧЕТА

Математика — предмет, который большинство из нас ненавидит. Расчеты и игра с числами являются неотъемлемой частью нашей повседневной жизни.

Говорят «Углубитесь во что угодно, и вы найдете Математику» .

Обучение абакусу делает процесс математических вычислений простым и интересным. Внедрение счетов в подходящем возрасте важно, так как тогда это только поможет ребенку освоить их. Итак, сегодня давайте копнем немного глубже, чтобы узнать об этом больше.

«ABACUS» — это латинское слово, происходящее от греческого слова ABAX , что означает счетный стол. Это простое устройство появилось в Вавилоне около 5000 лет назад. Он по-прежнему широко популярен в Японии, Китае, на Ближнем Востоке и в России.

Abacus используется для выполнения всех основных арифметических вычислений, таких как сложение, вычитание, умножение и деление. Его также можно использовать для извлечения квадратного корня и кубического корня. Он состоит из прямоугольной рамы с несколькими стержнями. Каждый стержень состоит из бусин, которые перемещаются вверх и вниз с помощью пальцев.

Двумя наиболее часто используемыми счетами являются китайский и японский. Китайские счеты, также известные как «saunpan», состоят из 5 бусин внизу и 2 бусин над планкой счета.Его можно использовать для подсчета до 16 различных чисел от 0 до 15. С другой стороны, японские счеты, также известные как «соробан», состоят из 4 бусинок под и 1 бусинки над счетной планкой. Каждый стержень может представлять 10 различных чисел от 0 до 9.

Горизонтальная перекладина, перпендикулярная стержням, разделяет счеты на две неравные части. Бусины выше перекладины известны как небесные бусины или верхние бусины, а те, что ниже перекладины, называются бусами земли или нижними бусинами. Счет на счетах осуществляется путем перемещения бусинок вверх и вниз по стержням.Бусины перемещаются с помощью большого и указательного пальцев. Перемещение шарика к счетному стержню используется для сложения, а удаление — для вычитания. Нижние бусинки перемещаются вверх большим пальцем, а для всех остальных движений бусинок используется указательный палец. Перед использованием счетов убедитесь, что все бусины находятся в нейтральном положении, обозначающем ноль. Это можно сделать, слегка положив большой и указательный пальцы на горизонтальную перекладину и перемещая их слева направо.Это необходимо делать каждый раз перед началом нового расчета.

Числовое значение каждой бусины зависит от ее положения на счетах. Каждая бусина небес имеет ценность в пять раз больше, чем бусина земли под ней. Каждый стержень представляет собой столбцы записанных чисел. Бусины на самом дальнем правом вертикальном стержне имеют свои значения, умноженные на единицу. На этом стержне каждая бусина земли — одна, а каждая бусина неба — пять. Бусины на втором стержне справа, однако, имеют свою ценность, умноженную на 10.На этом стержне каждая бусина земли представляет 10, а каждая бусина небес — 50. Бусины на третьем стержне справа имеют свою ценность, умноженную на 100, так что каждая бусина земли представляет 100, а каждая бусина небес — 500, и так далее. .

Для работы счеты кладут горизонтально и все бусины отодвигают к внешним краям от перекладины. Затем бусины сдвигаются вверх или вниз, чтобы представить число. Число 8, например, представлено перемещением одной бусины неба (стоимостью 5) вниз к перекладине и трех бусинок земли (стоимостью по одной) вверх к перекладине.Число 34 представлено перемещением вверх трех бусин земли на втором стержне (стоимостью 10 каждая) и четырех бусинок земли на первом стержне (стоимостью 1 каждая). Счеты позволяют решать сложные задачи на сложение, вычитание и даже на умножение и деление. Опытные пользователи могут даже найти квадратный корень из любого числа.

Лучший возраст для обучения счету – от 5 до 15 лет. Этот период считается стадией развития мозга, что облегчает ребенку овладение счетами.

При регулярной практике движение пальцев можно отточить так, что даже без физического стержня ребенок сможет выполнять вычисления. Это известно как умственный расчет. Вместо настоящих счетов ребенок создает в уме образ счетов и, просто мысленно двигая пальцами, может выполнять вычисления. Это тренирует мозг до такой степени, что сложные вычисления умножения и деления также могут быть легко выполнены. Процесс обучения на счетах включает в себя координацию между всеми нашими органами чувств, такими как ухо, глаза, пальцы и мозг.Это, с другой стороны, помогает значительно улучшить память, концентрацию, способность схватывать, читать, слушать и выполнять действия.

Счеты обычно преподаются по уровням. По мере того, как учащиеся переходят на следующий более высокий уровень, уровень сложности также увеличивается соответственно увеличению числа нет. цифр и нет. строк. Практика – это самое важное для совершенствования счетов. Только при регулярной практике учащиеся могут повысить скорость выполнения вычислений в уме.

Счеты считаются одним из самых быстрых способов вычисления и изучения математики. Быстрее, чем калькулятор, счеты не только дают юным ученикам возможность блистать в языке математики с самого раннего возраста, но также обеспечивают прочную основу для изучения языка математики в начальной и старшей школе. Помимо улучшения общего понимания математики, другие важные преимущества изучения счетов включают следующее:

  • Улучшает и ускоряет навыки вычисления.
  • Повышает выносливость к стрессу и давлению.
  • Улучшает способность решать проблемы.
  • Обостряет концентрацию и наблюдательность.
  • Развивает уверенность и чувство собственного достоинства.
  • Улучшает навыки ментальной визуализации.
  • Увеличивает силу памяти и обостряет общее умственное формирование.

Счеты обычно преподаются по уровням. По мере того, как учащиеся переходят на следующий более высокий уровень, уровень сложности также увеличивается соответственно увеличению числа нет.цифр и нет. строк в конкретной задаче. Практика — это самое важное в совершенствовании счетов. Только при регулярной практике учащиеся могут повысить скорость выполнения вычислений в уме.

Мы можем сделать вывод, что изучение счетов улучшит личность ребенка в целом, и эта черта будет отражаться в его академической успеваемости и за ее пределами.

🌈 Математика с радужными счетами

Ищете веселые, познавательные весенние занятия для детского сада ? Сделайте свои собственные радужные счеты, чтобы помочь малышам, дошкольникам, дошкольникам, первоклассникам и первоклассникам попрактиковаться в счете с помощью счетов . Упражнение .Это радужное занятие для детей можно использовать как радужное ремесло и практическую радужную математику , где дети будут работать над счетом. Мы использовали наш, чтобы сосчитать до 10, сосчитать до 50, сосчитать до 70, сосчитать до 100, а также в качестве упражнения для пропуска счета. Кроме того, этот набор «Радуга » для детского сада легко сделать из обычных материалов для рукоделия!

Счеты

Весна не за горами! Ну наконец то!!! Это означает, что у нас будет больше солнечного света, походов в парк, радужных поделок и игровых радужных занятий для детей.Этот набор Rainbow Math — это увлекательный способ для малышей, дошкольников, первоклассников и учеников 1-го класса практиковаться не только в счете, но и в пропуске счета. Этот набор для счетов идеально подходит для работы по счету до 10, от 1 до 70 и по 10 секунд. Кроме того, это такое прекрасное весеннее занятие для детсадовцев !

Являетесь ли вы родителем, ищущим весеннее математическое задание, учителем, ищущим увлекательный математический центр в своем классе, или школьником, который хочет добавить увлекательное занятие в дополнение к математике в домашнем обучении — это идеальный проект для вас!

Абакус поделка проект

Для изготовления этого самодельного абака вам понадобится несколько обычных подручных материалов:

  • ершики для труб (по одному каждого цвета радуги)
  • бусины пони (по 10 бусинок каждого цвета для сочетания с ершиками для труб)
  • белый пластилин
  • поверхность (чтобы прикрепить ваш проект как поднос для рисунков)


Радужная математика

Вам понадобится по одному из следующих ершиков для труб по порядку и разрежьте их под углом так, чтобы фиолетовый ершик обрезался короче, а красный ершик вообще не обрезался.

  • фиолетовый
  • сиреневый или темно-синий
  • голубой
  • зеленый
  • желтый
  • оранжевый
  • красный

Радужные счеты

Теперь наденьте по 10 бусин соответствующего цвета на каждый ершик.


Радужные занятия для детского сада

Теперь положите шарик пластилина на поверхность (мы использовали вот такие подносы) и воткните одну сторону ершика в тесто по порядку.Теперь положите еще один кусок пластилина на поверхность и воткните другой конец ершика с другой стороны.

Возможно, вам придется подрезать дополнительные ершики для труб, чтобы они легли правильно.


Весенние мероприятия для детского сада

Дети младшего возраста могут просто считать каждый цвет, чтобы закрепить счет от 1 до 20.

Дети дошкольного возраста и первоклассники умеют считать от 1 до 70 единицами, а затем считать до 10.
Это интересный способ для детей попрактиковаться в счете до 10.

СОВЕТ: с другими детьми используйте это, чтобы помочь им осмыслить пропуск счета . Наденьте по 2 бисеринки каждого цвета. Тогда вы можете считать по 2. Далее набираем по 5 бисеринок каждого цвета и пропускаем счет на 5. Это отличное наглядное пособие для детей, чтобы понять, как считать!

 

Весенние поделки для детей

   

Весенняя наука

Взгляните на эти невероятно ВЕСЕЛЫЕ весенних научных эксперимента для детей:

Цветочные принты

Ищете веселые, образовательные весенние идеи  , чтобы сделать обучение веселым в апреле и мае? Ознакомьтесь с этими забавными ресурсами:

Весенние печатные формы

.

Добавить комментарий

Ваш адрес email не будет опубликован.